skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1908587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry. 
    more » « less
  2. Not, available (Ed.)
    Abstract Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2‐C,C‐(Me3SiC3SiMe3)}] (2‐M) (BDI=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3;M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2] (1‐M,M=Ti,V) with 1,3‐dilithioallene [Li2(Me3SiC3SiMe3)]. Complexes2‐Mhave been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size‐exclusion chromatography (SEC) and intrinsic viscosity studies. Two‐electron oxidation of2‐Vwith nitrous oxide (N2O) cleanly yields a [VV] alkylidene‐alkynyl oxo complex [(BDI)V(=O){κ1‐C‐(=C(SiMe3)CC(SiMe3))}] (3), which lends support for how this scaffold in2‐Mmight be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3‐dianionic allene as a segue into M−C multiple bonds. 
    more » « less
  3. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  4. Enzymes of the radicalS-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5′C is covalently bound to the unique iron of the [4Fe–4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe–C5′ bond generates the nominally “free” 5′-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5′-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5′-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes. 
    more » « less
  5. We report the first mononuclear TiIIIcomplex possessing a terminal imido ligand. 
    more » « less
  6. Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe 7 S 9 MoC-homocitrate) as a critical N 2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E 4 (4H), which has accumulated 4[e − /H + ] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E 4 (4H) is poised to bind/reduce N 2 as driven by mechanistically-coupled H 2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H 2 as the enzyme relaxes to state E 2 (2H), containing 2[e − /H + ] as a hydride and sulfur-bound proton; accumulation of E 4 (4H) in α-V70I is enhanced by HP suppression. EPR and 95 Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e − /H + ] to the E 0 state of the WT MoFe protein and to both α-V70I conformations generating E 2 (2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e − /H + ] generates E 4 (4H) with Fe2–H–Fe6 as the second hydride. E 4 (4H) in WT enzyme and a minority α-V70I E 4 (4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E 2 (2H) containing Fe3–H–Fe7. In the dominant α-V70I E 4 (4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E 2 (2H) contains Fe2–H–Fe6. It is this HP suppression in E 4 (4H) that enables α-V70I MoFe to accumulate E 4 (4H) in high occupancy. In addition, HP suppression in α-V70I E 4 (4H) kinetically unmasks hydride reductive-elimination without N 2 -binding, a process that is precluded in WT enzyme. 
    more » « less