skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1908626

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Ostrovskyi (Ostrovskyi‐Vakhnenko/short pulse) equations are ubiquitous models in mathematical physics. They describe water waves under the action of a Coriolis force as well as the amplitude of a “short” pulse in an optical fiber. In this paper, we rigorously construct ground traveling waves for these models as minimizers of the Hamiltonian functional for any fixedL2norm. The existence argument proceeds via the method of compensated compactness, but it requires surprisingly detailed Fourier analysis arguments to rule out the nonvanishing of the limits of the minimizing sequences. We show that all of these waves are weakly nondegenerate and spectrally stable. 
    more » « less
  2. For generalized Korteweg–De Vries (KdV) models with polynomial nonlinearity, we establish a local smoothing property in [Formula: see text] for [Formula: see text]. Such smoothing effect persists globally, provided that the [Formula: see text] norm does not blow up in finite time. More specifically, we show that a translate of the nonlinear part of the solution gains [Formula: see text] derivatives for [Formula: see text]. Following a new simple method, which is of independent interest, we establish that, for [Formula: see text], [Formula: see text] norm of a solution grows at most by [Formula: see text] if [Formula: see text] norm is a priori controlled. 
    more » « less
  3. We consider the focussing fractional periodic Korteweg–deVries (fKdV) and fractional periodic non-linear Schrödinger equations (fNLS) equations, with L 2 sub-critical dispersion. In particular, this covers the case of the periodic KdV and Benjamin-Ono models. We construct two parameter family of bell-shaped travelling waves for KdV (standing waves for NLS), which are constrained minimizers of the Hamiltonian. We show in particular that for each $$\lambda > 0$$ , there is a travelling wave solution to fKdV and fNLS $$\phi : \|\phi \|_{L^2[-T,T]}^2=\lambda $$ , which is non-degenerate. We also show that the waves are spectrally stable and orbitally stable, provided the Cauchy problem is locally well-posed in H α/2 [ − T , T ] and a natural technical condition. This is done rigorously, without any a priori assumptions on the smoothness of the waves or the Lagrange multipliers. 
    more » « less