Abstract The cores of pulsars are expected to become superconducting soon after birth. The transition to type-II superconductivity is associated with the bunching of magnetic field lines into discrete superconducting flux tubes which possess enormous tension. The coupling of the crust to the flux tubes implies the existence of huge tangential magnetic fields at the crust–core interface. We show that the transition to superconductivity triggers a highly nonlinear response in the Hall drift of the crustal magnetic field, an effect which was neglected in previous numerical modeling. We argue that at the time of the phase transition giant Hall waves are launched from the crust–core interface toward the surface. Our models show that if the crust contains a multipolar magnetic field ∼1013G, the amplitude of the Hall waves is ∼1015G. The elastic deformation of the lattice is included in our models, which allows us to track the time-dependent shear stresses everywhere in the crust. The simulations indicate that the Hall waves may be strong enough to break the crust, and could cause star quakes which trigger rotation glitches and changes in the radio pulse profile. The Hall waves also couple to slow magnetospheric changes, which cause anomalous braking indices. The emission of the giant Hall waves from the crust–core interface facilitates fast flux expulsion from the superconducting core, provided that the flux tubes in the core are themselves sufficiently mobile. For all of the flux tube mobility prescriptions implemented in this work, the core approaches the Meissner state withB= 0 at late times.
more »
« less
On the ground states of the Ostrovskyi equation and their stability
Abstract The Ostrovskyi (Ostrovskyi‐Vakhnenko/short pulse) equations are ubiquitous models in mathematical physics. They describe water waves under the action of a Coriolis force as well as the amplitude of a “short” pulse in an optical fiber. In this paper, we rigorously construct ground traveling waves for these models as minimizers of the Hamiltonian functional for any fixedL2norm. The existence argument proceeds via the method of compensated compactness, but it requires surprisingly detailed Fourier analysis arguments to rule out the nonvanishing of the limits of the minimizing sequences. We show that all of these waves are weakly nondegenerate and spectrally stable.
more »
« less
- Award ID(s):
- 1908626
- PAR ID:
- 10457826
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Studies in Applied Mathematics
- Volume:
- 144
- Issue:
- 4
- ISSN:
- 0022-2526
- Page Range / eLocation ID:
- p. 548-575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent observational and numerical studies have investigated the dynamics of fine‐scale gravity waves radiating horizontally outward from tropical cyclones. The waves are wrapped into spirals by the tangential wind of the cyclone and are described as spiral gravity waves. This study addresses how well numerical simulations of these waves compare to observations as the horizontal grid spacing is decreased from 2.0 to 1.0 to 0.5 km, and the number of vertical levels changes from 25 to 50 to 100. Spectral filtering is applied to separate the fine‐scale waves in vertical velocity (w) and the larger‐scale waves in pressure (p) from moist updrafts and downdrafts in the eyewall and rainbands. As the grid spacing decreases, the radial wavelengths of thewwaves decrease from 20 to 7 km, approaching observed values. For grid spacing 1.0 km, thepwaves become well‐resolved with wavelength 70 km. The outward phase speeds range from 15 to 30 ms−1for thewwaves and 50 to 70 ms−1forpwaves. Analysis of the upper‐level outflow region finds that the spiralwwaves propagate 5–10 ms−1faster due to radial advection, but also finds what appear to be different classes of larger‐amplitude, slow‐moving spiral waves. Similar waves can be seen in satellite images, which appear to be caused by dynamical instability of the strongly vertically sheared radial and tangential winds in the TC outflow.more » « less
-
Abstract We use high temporal‐resolution mesoscale imagery from the Geostationary Operational Environmental Satellite‐R (GOES‐R) series to track the Lamb and gravity waves generated by the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption. The 1‐min cadence of these limited area (∼1,000×1,000 km2) brightness temperatures ensures an order of magnitude better temporal sampling than full‐disk imagery available at 10‐min or 15‐min cadence. The wave patterns are visualized in brightness temperature image differences, which represent the time derivative of the full waveform with the level of temporal aliasing being determined by the imaging cadence. Consequently, the mesoscale data highlight short‐period variations, while the full‐disk data capture the long‐period wave packet envelope. The full temperature anomaly waveform, however, can be reconstructed reasonably well from the mesoscale waveform derivatives. The reconstructed temperature anomaly waveform essentially traces the surface pressure anomaly waveform. The 1‐min imagery reveals waves with ∼40–80 km wavelengths, which trail the primary Lamb pulse emitted at ∼04:29 UTC. Their estimated propagation speed is ∼315 ± 15 m s−1, resulting in typical periods of 2.1–4.2 min. Weaker Lamb waves were also generated by the last major eruption at ∼08:40–08:45 UTC, which were, however, only identified in the near field but not in the far field. We also noted wind effects such as mean flow advection in the propagation of concentric gravity wave rings and observed gravity waves traveling near their theoretical maximum speed.more » « less
-
Abstract Macroalgae structure coastal ecosystems affecting metabolism, nutrient dynamics, and food webs. Spatially explicit prediction of macroalgal abundance is critical for understanding coastal ecosystems and trajectories. However, models of macroalgal distribution tend to be mechanistic and generalize poorly, or biogeographic and too coarse to use over spatial scales most appropriate to ecosystem research and management (1–100 km2). Our objective was to develop spatial distribution models for benthic macroalgae in soft‐sediment environments. We compared macroalgal abundance quantified as percent cover, with environmental drivers on 1 ha intertidal flats in a > 900 km2lagoon system along the Atlantic Coast of Virginia, U.S.A. Physical drivers of macroalgae (e.g., depth‐mediated light availability, exposure to waves) are related to bed morphology. We developed a novel topographic index (τ) to determine whether bed morphology predicts macroalgal abundance. This topographic index described variation in elevation occurring over spatial scales relevant to macroalgae, ranging from smooth to hummocky (τ= 0.01–1.07). Models testedτalong with mean elevation, fetch, and water residence time as predictors of macroalgal abundance.τ, and the interaction with water residence time, were most strongly related to macroalgal abundance. Hummocky flats accumulated less macroalgae than smoother flats, but exceptions occurred with short residence times. Model error (root mean square error) was low, varying between 8% and 18% across models. These models, based on readily measured physical features, are a useful approach for assessing macroalgal abundance in relation to shoreline hardening, species invasions, sea‐level rise, and changing sedimentation affecting coastal ecosystems.more » « less
-
Abstract Double white dwarf (WD) binaries are increasingly being discovered at short orbital periods where strong tidal effects and significant tidal heating signatures may occur. We assume that the tidal potential of the companion excites outgoing gravity waves within the WD primary, the dissipation of which leads to an increase in the WD’s surface temperature. We compute the excitation and dissipation of the waves in cooling WD models in evolvingMESAbinary simulations. Tidal heating is self-consistently computed and added to the models at every time step. As a binary inspirals to orbital periods less than ∼20 minutes, the WD’s behavior changes from cooling to heating, with temperature enhancements that can exceed 10,000 K compared with nontidally heated models. We compare a grid of tidally heated WD models to observed short-period systems with hot WD primaries. While tidal heating affects theirTeff, it is likely not the dominant luminosity. Instead, these WDs are probably intrinsically young and hot, implying that the binaries formed at short orbital periods. The binaries are consistent with undergoing common envelope evolution with a somewhat low efficiencyαCE. We delineate the parameter space where the traveling wave assumption is most valid, noting that it breaks down for WDs that cool sufficiently, where standing waves may instead be formed.more » « less
An official website of the United States government
