skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: From Carbon to Cobalt: Chemical Compositions and Ages of z ∼ 0.7 Quiescent Galaxies
Abstract We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited.  more » « less
Award ID(s):
1908748
PAR ID:
10430569
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 140
Size(s):
Article No. 140
Sponsoring Org:
National Science Foundation
More Like this
  1. We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies at z ∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1 using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation with σv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] and σv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of the z ∼ 0.7 quiescent galaxies are strikingly similar to those at z ∼ 0. However, at the lowest-velocity dispersions, the z ∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than their z ∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of both z ∼ 0 and z ∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited. 
    more » « less
  2. Abstract We present the elemental abundances and ages of 19 massive quiescent galaxies atz∼ 1.4 andz∼ 2.1 from the Keck Heavy Metal Survey. The ultradeep LRIS and MOSFIRE spectra were modeled using a full-spectrum stellar population fitting code with variable abundance patterns. The galaxies have iron abundances between [Fe/H] = −0.5 and −0.1 dex, with typical values of −0.2 [−0.3] atz∼ 1.4 [z∼ 2.1]. We also find a tentative log σ v –[Fe/H] relation atz∼ 1.4. The magnesium-to-iron ratios span [Mg/Fe] = 0.1–0.6 dex, with typical values of 0.3 [0.5] dex atz∼ 1.4 [z∼ 2.1]. The ages imply formation redshifts ofzform= 2–8. Compared to quiescent galaxies at lower redshifts, we find that [Fe/H] was ∼0.2 dex lower atz= 1.4–2.1. We find no evolution in [Mg/Fe] out toz∼ 1.4, though thez∼ 2.1 galaxies are 0.2 dex enhanced compared toz= 0–0.7. A comparison of these results to a chemical evolution model indicates that galaxies at higher redshift form at progressively earlier epochs and over shorter star formation timescales, with thez∼ 2.1 galaxies forming the bulk of their stars over 150 Myr atzform∼ 4. This evolution cannot be solely attributed to an increased number of quiescent galaxies at later times; several Heavy Metal galaxies have extreme chemical properties not found in massive galaxies atz∼ 0.0–0.7. Thus, the chemical properties of individual galaxies must evolve over time. Minor mergers also cannot fully account for this evolution as they cannot increase [Fe/H], particularly in galaxy centers. Consequently, the buildup of massive quiescent galaxies sincez∼ 2.1 may require further mechanisms, such as major mergers and/or central star formation. 
    more » « less
  3. Abstract We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe. 
    more » « less
  4. Abstract Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M
    more » « less
  5. Abstract We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z) and low stellar masses (104.7–107.6M). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7. 
    more » « less