skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1909030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Physical Reservoir Computing (PRC) is an unconventional computing paradigm that exploits the nonlinear dynamics of reservoir blocks to perform temporal data classification and prediction tasks. Here, we show with simulations that patterned thin films hosting skyrmion can implement energy-efficient straintronic reservoir computing (RC) in the presence of room-temperature thermal perturbation. This RC block is based on strain-induced nonlinear breathing dynamics of skyrmions, which are coupled to each other through dipole and spin-wave interaction. The nonlinear and coupled magnetization dynamics were exploited to perform temporal data classification and prediction. Two performance metrics, namely Short-Term Memory (STM) and Parity Check (PC) capacity are studied and shown to be promising (4.39 and 4.62 respectively), in addition to showing it can classify sine and square waves with 100% accuracy. These demonstrate the potential of such skyrmion based PRC. Furthermore, our study shows that nonlinear magnetization dynamics and interaction through spin-wave and dipole coupling have a strong influence on STM and PC capacity, thus explaining the role of physical interaction in a dynamical system on its ability to perform RC. 
    more » « less
  3. Abstract Implementation of skyrmion based energy efficient and high-density data storage devices requires aggressive scaling of skyrmion size. Ferrimagnetic materials are considered to be a suitable platform for this purpose due to their low saturation magnetization (i.e. smaller stray field). However, this method of lowering the saturation magnetization and scaling the lateral size of skyrmions is only applicable where the skyrmions have a smaller lateral dimension compared to the hosting film. Here, we show by performing rigorous micromagnetic simulation that the size of skyrmions, which have lateral dimension comparable to their hosting nanodot can be scaled by increasing saturation magnetization. Also, when the lateral dimension of nanodot is reduced and thereby the skyrmion confined in it is downscaled, there remains a challenge in forming a stable skyrmion with experimentally observed Dzyaloshinskii–Moriya interaction (DMI) values since this interaction has to facilitate higher canting  per spin to complete a 360° rotation along the diameter. In our study, we found that skyrmions can be formed in 20 nm lateral dimension nanodots with high saturation magnetization (1.30–1.70 MA/m) and DMI values (~ 3 mJ/m 2 ) that have been reported to date. This result could stimulate experiments on implementation of highly dense skyrmion devices. Additionally, using this, we show that voltage controlled magnetic anisotropy based switching mediated by an intermediate skyrmion state can be achieved in the soft layer of a ferromagnetic p-MTJ of lateral dimensions 20 nm with sub 1 fJ/bit energy in the presence of room temperature thermal noise with reasonable DMI ~ 3 mJ/m 2 . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)