# Search for:All records

Award ID contains: 1910030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

1. In this article, we show how a single function,join, can be used to implement parallelbalanced binary search trees(BSTs) simply and efficiently. Based onjoin, our approach applies to multiple balanced tree data structures, and a variety of functions for ordered sets and maps. We describe our technique as an algorithmic framework calledjoin-based algorithms. We show that thejoinfunction fully captures what is needed for rebalancing trees for a variety of tree algorithms, as long as the balancing scheme satisfies certain properties, which we refer to asjoinabletrees. We discuss four balancing schemes that are joinable: AVL trees, red-black trees, weight-balanced trees, and treaps. We present a variety of tree algorithms that apply to joinable trees, includinginsert,delete,union,intersection,difference,split,range,filter, and so on, most of them also parallel. These algorithms are generic across balancing schemes. Many algorithms are optimal in the comparison model, and we provide a general proof to show the efficiency in work for joinable trees. The algorithms are highly parallel, all with polylogarithmic span (parallel dependence). Specifically, the set-set operationsunion,intersection, anddifferencehave work$O(m\log (\frac{n}{m}+1))$and polylogarithmic span for input set sizes$n$and$m\le n$.

We implemented and tested our algorithms on the four balancing schemes. In general, all four schemes have quite similar performance, but the weight-balanced tree slightly outperforms the others. They have the same speedup characteristics, getting around 73$\times$speedup on 72 cores (144 hyperthreads). Experimental results also show that our implementation outperforms existing parallel implementations, and our sequential version achieves close or much better performance than the sequential merging algorithm in C++ Standard Template Library (STL) on various input sizes.

more » « less
2. (Ed.)
Many modern programming languages are shifting toward a functional style for collection interfaces such as sets, maps, and sequences. Functional interfaces offer many advantages, including being safe for parallelism and providing simple and lightweight snapshots. However, existing high-performance functional interfaces such as PAM, which are based on bal- anced purely-functional trees, incur large space overheads for large-scale data analysis due to storing every element in a separate node in a tree. This paper presents PaC-trees, a purely-functional data structure supporting functional interfaces for sets, maps, and sequences that provides a significant reduction in space over existing approaches. A PaC-tree is a balanced binary search tree which blocks the leaves and compresses the blocks us- ing arrays. We provide novel techniques for compressing and uncompressing the blocks which yield practical parallel functional algorithms for a broad set of operations on PaC- trees such as union, intersection, filter, reduction, and range queries which are both theoretically and practically efficient. Using PaC-trees we designed CPAM, a C++ library that im- plements the full functionality of PAM, while offering signifi- cant extra functionality for compression. CPAM consistently matches or outperforms PAM on a set of microbenchmarks on sets, maps, and sequences while using about a quarter of the space. On applications including inverted indices, 2D range queries, and 1D interval queries, CPAM is competitive with or faster than PAM, while using 2.1ś7.8x less space. For static and streaming graph processing, CPAM offers 1.6x faster batch updates while using 1.3ś2.6x less space than the state-of-the-art graph processing system Aspen.
more » « less
3. Safe memory reclamation (SMR) schemes are an essential tool for lock-free data structures and concurrent programming. However, manual SMR schemes are notoriously difficult to apply correctly, and automatic schemes, such as reference counting, have been argued for over a decade to be too slow for practical purposes. A recent wave of work has disproved this long-held notion and shown that reference counting can be as scalable as hazard pointers, one of the most common manual techniques. Despite these tremendous improvements, there remains a gap of up to 2x or more in performance between these schemes and faster manual techniques such as epoch-based reclamation (EBR). In this work, we first advance these ideas and show that in many cases, automatic reference counting can in fact be as fast as the fastest manual SMR techniques.We generalize our previous algorithm called Concurrent Deferred Reference Counting (CDRC) to obtain a method for converting any standard manual SMR technique into an automatic reference counting technique with a similar performance profile. Our second contribution is extending this framework to support weak pointers, which are reference-counted pointers that automatically break pointer cycles by not contributing to the reference count, thus addressing a common weakness in reference-counted garbage collection. Our experiments with a C++-library implementation show that our automatic techniques perform in line with their manual counterparts, and that our weak pointer implementation outperforms the best known atomic weak pointer library by up to an order of magnitude on high thread counts. All together, we show that the ease of use of automatic memory management can be achieved without significant cost to practical performance or general applicability.
more » « less
4. The Problem-Based Benchmark Suite (PBBS) is a set of benchmark problems designed for comparing algorithms, implementations and platforms. For each problem, the suite defines the problem in terms of the input-output relationship, and supplies a set of input instances along with input generators, a default implementation, code for checking correctness or accuracy, and a timing harness. The suite makes it possible to compare different algorithms, platforms (e.g. GPU vs CPU), and implementations using different programming languages or libraries. The purpose is to better understand how well a wide variety of problems parallelize, and what techniques/algorithms are most effective. The suite was first announced in 2012 with 14 benchmark problems. Here we describe some significant updates. In particular, we have added nine new benchmarks from a mix of problems in text processing, computational geometry and machine learning. We have further optimized the default implementations; several are the fastest available for multicore CPUs, often achieving near perfect speedup on the 72 core machine we test them on. The suite now also supplies significantly larger default test instances, as well as a broader variety, with many derived from real-world data.
more » « less
5. This paper presents a new and practical approach to lock-free locks based on helping, which allows the user to write code using fine-grained locks, but run it in a lock-free manner. Although lock-free locks have been suggested in the past, they are widely viewed as impractical, have some key limitations, and, as far as we know, have never been implemented. The paper presents some key techniques that make lock-free locks practical and more general. The most important technique is an approach to idempotence—i.e. making code that runs multiple times appear as if it ran once. The idea is based on using a shared log among processes running the same protected code. Importantly, the approach can be library based, requiring very little if any change to standard code—code just needs to use the idempotent versions of memory operations (load, store, LL/SC, allocation, free). We have implemented a C++ library called Flock based on the ideas. Flock allows lock-based data structures to run in either lock-free or blocking (traditional locks) mode. We implemented a variety of tree and list-based data structures with Flock and compare the performance of the lock-free and blocking modes under a variety of workloads. The lock-free mode is almost as fast as blocking mode under almost all workloads, and significantly faster when threads are oversubscribed (more threads than processors). We also compare with several existing lock-based and lock-free alternatives.
more » « less
6. Non-volatile random access memory (NVRAM) offers byte-addressable persistence at speeds comparable to DRAM. However, with caches remaining volatile, automatic cache evictions can reorder updates to memory, potentially leaving persistent memory in an inconsistent state upon a system crash. Flush and fence instructions can be used to force ordering among updates, but are expensive. This has motivated significant work studying how to write correct and efficient persistent programs for NVRAM. In this paper, we present FliT, a C++ library that facilitates writing efficient persistent code. Using the library's default mode makes any linearizable data structure durable with minimal changes to the code. FliT avoids many redundant flush instructions by using a novel algorithm to track dirty cache lines. It also allows for extra optimizations, but achieves good performance even in its default setting. To describe the FliT library's capabilities and guarantees, we define a persistent programming interface, called the P-V Interface, which FliT implements. The P-V Interface captures the expected behavior of code in which some instructions' effects are persisted and some are not. We show that the interface captures the desired semantics of many practical algorithms in the literature. We apply the FliT library to four different persistent data structures, and show that across several workloads, persistence implementations, and data structure sizes, the FliT library always improves operation throughput, by at least 2.1X over a naive implementation in all but one workload.
more » « less
7. (Ed.)
Programming languages using functions on collections of values, such as map, reduce, scan and filter, have been used for over fifty years. Such collections have proven to be particularly useful in the context of parallelism because such functions are naturally parallel. However, if implemented naively they lead to the generation of temporary intermediate collections that can significantly increase memory usage and runtime. To avoid this pitfall, many approaches use "fusion" to combine operations and avoid temporary results. However, most of these approaches involve significant changes to a compiler and are limited to a small set of functions, such as maps and reduces. In this paper we present a library-based approach that fuses widely used operations such as scans, filters, and flattens. In conjunction with existing techniques, this covers most of the common operations on collections. Our approach is based on a novel technique which parallelizes over blocks, with streams within each block. We demonstrate the approach by implementing libraries targeting multicore parallelism in two languages: Parallel ML and C++, which have very different semantics and compilers. To help users understand when to use the approach, we define a cost semantics that indicates when fusion occurs and how it reduces memory allocations. We present experimental results for a dozen benchmarks that demonstrate significant reductions in both time and space. In most cases the approach generates code that is near optimal for the machines it is running on.
more » « less
8. We present a set of parallel algorithms for computing exact k-nearest neighbors in low dimensions. Many k-nearest neighbor algorithms use either a kd-tree or the Morton ordering of the point set; our algorithms combine these approaches using a data structure we call the zd-tree. We show that this combination is both theoretically efficient under common assumptions, and fast in practice. For point sets of size n with bounded expansion constant and bounded ratio, the zd-tree can be built in O(n) work with O(n^ε) span for constant ε < 1, and searching for the k-nearest neighbors of a point takes expected O(k log k) time. We benchmark our k-nearest neighbor algorithms against existing parallel k-nearest neighbor algorithms, showing that our implementations are generally faster than the state of the art as well as achieving 75x speedup on 144 hyperthreads. Furthermore, the zd-tree supports parallel batch-dynamic insertions and deletions; to our knowledge, it is the first k-nearest neighbor data structure to support such updates. On point sets with bounded expansion constant and bounded ratio, a batch-dynamic update of size k requires O(k log n/k) work with O(k^ε + polylog(n)) span.
more » « less