skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FliT: a library for simple and efficient persistent algorithms
Non-volatile random access memory (NVRAM) offers byte-addressable persistence at speeds comparable to DRAM. However, with caches remaining volatile, automatic cache evictions can reorder updates to memory, potentially leaving persistent memory in an inconsistent state upon a system crash. Flush and fence instructions can be used to force ordering among updates, but are expensive. This has motivated significant work studying how to write correct and efficient persistent programs for NVRAM. In this paper, we present FliT, a C++ library that facilitates writing efficient persistent code. Using the library's default mode makes any linearizable data structure durable with minimal changes to the code. FliT avoids many redundant flush instructions by using a novel algorithm to track dirty cache lines. It also allows for extra optimizations, but achieves good performance even in its default setting. To describe the FliT library's capabilities and guarantees, we define a persistent programming interface, called the P-V Interface, which FliT implements. The P-V Interface captures the expected behavior of code in which some instructions' effects are persisted and some are not. We show that the interface captures the desired semantics of many practical algorithms in the literature. We apply the FliT library to four different persistent data structures, and show that across several workloads, persistence implementations, and data structure sizes, the FliT library always improves operation throughput, by at least 2.1X over a naive implementation in all but one workload.  more » « less
Award ID(s):
1919223 2119352 1901381 1910030
PAR ID:
10416067
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
Page Range / eLocation ID:
309 to 321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Non-volatile memory (NVRAM) based on phase-change memory (such as Optane DC Persistent Memory Module) is making its way into Intel servers to address the needs of emerging applications that have a huge memory footprint. These systems have both DRAM and NVRAM on the same memory channel with the smaller capacity DRAM serving as a cache to the larger capacity NVRAM in the so called 2LM mode. In this work we analyze the performance of such DRAM caches on real hardware using a broad range of synthetic and real-world benchmarks. We identify three key limitations of DRAM caches in these emerging systems which prevent large-scale, bandwidth bound applications from taking full advantage of NVRAM read and write bandwidth. We show that software based techniques are necessary for orchestrating the data movement between DRAM and PMM for such workloads to take full advantage of these new heterogeneous memory systems. 
    more » « less
  2. Persistent memory enables a new class of applications that have persistent in-memory data structures. Recoverability of these applications imposes constraints on the ordering of writes to persistent memory. But, the cache hierarchy and memory controllers in modern systems may reorder writes to persistent memory. Therefore, programmers have to use expensive flush and fence instructions that stall the processor to enforce such ordering. While prior efforts circumvent stalling on long latency flush instructions, these designs under-perform in large-scale systems with many cores and multiple memory controllers.We propose ASAP, an architectural model in which the hardware takes an optimistic approach by persisting data eagerly, thereby avoiding any ordering stalls and utilizing the total system bandwidth efficiently. ASAP avoids stalling by allowing writes to be persisted out-of-order, speculating that all writes will eventually be persisted. For correctness, ASAP saves recovery information in the memory controllers which is used to undo the effects of speculative writes to memory in the event of a crash.Over a large number of representative workloads, ASAP improves performance over current Intel systems by 2.3 on average and performs within 3.9% of an ideal system. 
    more » « less
  3. While deep learning methods have been adopted in power side-channel analysis, they have not been applied to cache timing attacks due to the limited dimension of cache timing data. This paper proposes a persistent cache monitor based on cache line flushing instructions, which runs concurrently to a victim execution and captures detailed memory access patterns in high- dimensional timing traces. We discover a new cache timing side- channel across both inclusive and non-inclusive caches, different from the traditional “Flush+Flush” timing leakage. We then propose a non-profiling differential deep learning analysis strategy to exploit the cache timing traces for key recovery. We further propose a framework for cross-platform cache timing attack via deep learning. Knowledge learned from profiling a common reference device can be transferred to build models to attack many other victim devices, even in different processor families. We take the OpenSSL AES-128 encryption algorithm as an example victim and deploy an asynchronous cache attack. We target three different devices from Intel, AMD, and ARM processors. We examine various scenarios for assigning the teacher role to one device and the student role to other devices, and evaluate the cross- platform deep-learning attack framework. Experimental results show that this new attack is easily extendable to victim devices • and is more effective than attacks without any prior knowledge. 
    more » « less
  4. Non-volatile Memory (NVM) offers the opportunity to build large, durable B+ trees with markedly higher performance and faster post-crash recovery than is possible with traditional disk- or flash-based persistence. Unfortunately, cache flush and fence instructions, required for crash consistency and failure atomicity on many machines, introduce substantial overhead not present in non-persistent trees, and force additional NVM reads and writes. The overhead is particularly pronounced in workloads that benefit from cache reuse due to good temporal locality or small working sets---traits commonly observed in real-world applications. In this paper, we propose a buffered durable B+ tree (BD+Tree) that improves performance and reduces NVM traffic viarelaxedpersistence. Execution of a BD+Tree is divided intoepochsof a few milliseconds each; if a crash occurs in epoche,the tree recovers to its state as of the end of epoche-2. (The persistence boundary can always be made current with an explicit sync operation, which quickly advances the epoch by 2.) NVM writes within an epoch are aggregated for delayed persistence, thereby increasing cache reuse and reducing traffic to NVM. In comparison to state-of-the-art persistent B+ trees, our micro-benchmark experiments show that BD+Tree can improve throughput by up to 2.4x and reduce NVM writes by up to 90% when working sets are small or workloads exhibit strong temporal locality. On real-world workloads that benefit from cache reuse, BD+Tree realizes throughput improvements of 1.1--2.4x and up to a 99% decrease in NVM writes. Even on uniform workloads, with working sets that significantly exceed cache capacity, BD+Tree still improves throughput by 1--1.3x. The performance advantage of BD+Tree increases with larger caches, suggesting ongoing benefits as CPUs evolve toward gigabyte cache capacities. 
    more » « less
  5. Persistent memory presents a great opportunity for crash-consistent computing in large-scale computing systems. The ability to recover data upon power outage or crash events can significantly improve the availability of large-scale systems, while improving the performance of persistent data applications (e.g., database applications). However, persistent memory suffers from high write latency and requires specific programming model (e.g., Intel’s PMDK) to guarantee crash consistency, which results in long latency to persist data. To mitigate these problems, recent standards advocate for sufficient back-up power that can flush the whole cache hierarchy to the persistent memory upon detection of an outage, i.e., extending the persistence domain to include the cache hierarchy. In the secure NVM with extended persistent domain(EPD), in addition to flushing the cache hierarchy, extra actions need to be taken to protect the flushed cache data. These extra actions of secure operation could cause significant burden on energy costs and battery size. We demonstrate that naive implementations could lead to significantly expanding the required power holdup budget (e.g., 10.3x more operations than EPD system without secure memory support). The significant overhead is caused by memory accesses of secure metadata. In this paper, we present Horus, a novel EPD-aware secure memory implementation. Horus reduces the overhead during draining period of EPD system by reducing memory accesses of secure metadata. Experiment result shows that Horus reduces the draining time by 5x, compared with the naive baseline design. 
    more » « less