skip to main content


Search for: All records

Award ID contains: 1910110

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent works have shown that imposing tensor structures on the coefficient tensor in regression problems can lead to more reliable parameter estimation and lower sample complexity compared to vector-based methods. This work investigates a new low-rank tensor model, called Low Separation Rank (LSR), in Generalized Linear Model (GLM) problems. The LSR model – which generalizes the well-known Tucker and CANDECOMP/PARAFAC (CP) models, and is a special case of the Block Tensor Decomposition (BTD) model – is imposed onto the coefficient tensor in the GLM model. This work proposes a block coordinate descent algorithm for parameter estimation in LSR-structured tensor GLMs. Most importantly, it derives a minimax lower bound on the error threshold on estimating the coefficient tensor in LSR tensor GLM problems. The minimax bound is proportional to the intrinsic degrees of freedom in the LSR tensor GLM problem, suggesting that its sample complexity may be significantly lower than that of vectorized GLMs. This result can also be specialised to lower bound the estimation error in CP and Tucker-structured GLMs. The derived bounds are comparable to tight bounds in the literature for Tucker linear regression, and the tightness of the minimax lower bound is further assessed numerically. Finally, numerical experiments on synthetic datasets demonstrate the efficacy of the proposed LSR tensor model for three regression types (linear, logistic and Poisson). Experiments on a collection of medical imaging datasets demonstrate the usefulness of the LSR model over other tensor models (Tucker and CP) on real, imbalanced data with limited available samples. License: Creative Commons Attribution 4.0 International (CC BY 4.0) 
    more » « less
  2. This paper considers the problem of understanding the exit time for trajectories of gradient-related first-order methods from saddle neighborhoods under some initial boundary conditions. Given the ‘flat’ geometry around saddle points, first-order methods can struggle to escape these regions in a fast manner due to the small magnitudes of gradients encountered. In particular, while it is known that gradient-related first-order methods escape strict-saddle neighborhoods, existing analytic techniques do not explicitly leverage the local geometry around saddle points in order to control behavior of gradient trajectories. It is in this context that this paper puts forth a rigorous geometric analysis of the gradient-descent method around strict-saddle neighborhoods using matrix perturbation theory. In doing so, it provides a key result that can be used to generate an approximate gradient trajectory for any given initial conditions. In addition, the analysis leads to a linear exit-time solution for gradient-descent method under certain necessary initial conditions, which explicitly bring out the dependence on problem dimension, conditioning of the saddle neighborhood, and more, for a class of strict-saddle functions. 
    more » « less
  3. We study the low-rank phase retrieval problem, where the objective is to recover a sequence of signals (typically images) given the magnitude of linear measurements of those signals. Existing solutions involve recovering a matrix constructed by vectorizing and stacking each image. These solutions model this matrix to be low-rank and leverage the low-rank property to decrease the sample complexity required for accurate recovery. However, when the number of available measurements is more limited, these low-rank matrix models can often fail. We propose an algorithm called Tucker-Structured Phase Retrieval (TSPR) that models the sequence of images as a tensor rather than a matrix that we factorize using the Tucker decomposition. This factorization reduces the number of parameters that need to be estimated, allowing for a more accurate reconstruction. We demonstrate the effectiveness of our approach on real video datasets under several different measurement models. 
    more » « less
  4. This paper considers the problem of matrix-variate logistic regression. This paper derives the fundamental error threshold on estimating low-rank coefficient matrices in the logistic regression problem by deriving a lower bound on the minimax risk. The bound depends explicitly on the dimension and distribution of the covariates, the rank and energy of the coefficient matrix, and the number of samples. The resulting bound is proportional to the intrinsic degrees of freedom in the problem, which suggests the sample complexity of the low-rank matrix logistic regression problem can be lower than that for vectorized logistic regression. The proof techniques utilized in this work also set the stage for development of minimax lower bounds for tensor-variate logistic regression problems. 
    more » « less
  5. Statistical machine learning algorithms often involve learning a linear relationship between dependent and independent variables. This relationship is modeled as a vector of numerical values, commonly referred to as weights or predictors. These weights allow us to make predictions, and the quality of these weights influence the accuracy of our predictions. However, when the dependent variable inherently possesses a more complex, multidimensional structure, it becomes increasingly difficult to model the relationship with a vector. In this paper, we address this issue by investigating machine learning classification algorithms with multidimensional (tensor) structure. By imposing tensor factorizations on the predictors, we can better model the relationship, as the predictors would take the form of the data in question. We empirically show that our approach works more efficiently than the traditional machine learning method when the data possesses both an exact and an approximate tensor structure. Additionally, we show that estimating predictors with these factorizations also allow us to solve for fewer parameters, making computation more feasible for multidimensional data. 
    more » « less
  6. null (Ed.)