skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Rank Phase Retrieval with Structured Tensor Models
We study the low-rank phase retrieval problem, where the objective is to recover a sequence of signals (typically images) given the magnitude of linear measurements of those signals. Existing solutions involve recovering a matrix constructed by vectorizing and stacking each image. These solutions model this matrix to be low-rank and leverage the low-rank property to decrease the sample complexity required for accurate recovery. However, when the number of available measurements is more limited, these low-rank matrix models can often fail. We propose an algorithm called Tucker-Structured Phase Retrieval (TSPR) that models the sequence of images as a tensor rather than a matrix that we factorize using the Tucker decomposition. This factorization reduces the number of parameters that need to be estimated, allowing for a more accurate reconstruction. We demonstrate the effectiveness of our approach on real video datasets under several different measurement models.  more » « less
Award ID(s):
1910110
PAR ID:
10390012
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
3643 to 3647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the low-rank phase retrieval problem, where our goal is to recover a $$d_1\times d_2$$ low-rank matrix from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We propose a solution to this problem using the recently introduced technique of anchored regression. This approach uses two different types of convex relaxations: we replace the quadratic equality constraints for the phaseless measurements by a search over a polytope and enforce the rank constraint through nuclear norm regularization. The result is a convex program in the space of $$d_1 \times d_2$$ matrices. We analyze two specific scenarios. In the first, the target matrix is rank-$$1$$, and the observations are structured to correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we observe the magnitudes of the inner products against a series of independent Gaussian random matrices. In each of these problems, we show that anchored regression returns an accurate estimate from a near-optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We also show how to create such an anchor in the phaseless blind deconvolution problem from an optimal number of measurements and present a partial result in this direction for the general rank problem. 
    more » « less
  2. Tucker decomposition is a low-rank tensor approximation that generalizes a truncated matrix singular value decomposition (SVD). Existing parallel software has shown that Tucker decomposition is particularly effective at compressing terabyte-sized multidimensional scientific simulation datasets, computing reduced representations that satisfy a specified approximation error. The general approach is to get a low-rank approximation of the input data by performing a sequence of matrix SVDs of tensor unfoldings, which tend to be short-fat matrices. In the existing approach, the SVD is performed by computing the eigendecomposition of the Gram matrix of the unfolding. This method sacrifices some numerical stability in exchange for lower computation costs and easier parallelization. We propose using a more numerically stable though more computationally expensive way to compute the SVD by pre- processing with a QR decomposition step and computing an SVD of only the small triangular factor. The more numerically stable approach allows us to achieve the same accuracy with half the working precision (for example, single rather than double precision). We demonstrate that our method scales as well as the existing approach, and the use of lower precision leads to an overall reduction in running time of up to a factor of 2 when using 10s to 1000s of processors. Using the same working precision, we are also able to compute Tucker decompositions with much smaller approximation error. 
    more » « less
  3. We tackle the problem of recovering a complex signal $$\vx\in\mathbb{C}^n$$ from quadratic measurements of the form $$y_i=\vx^*\vA_i\vx$$, where $$\{\vA_i\}_{i=1}^m$$ is a set of complex iid standard Gaussian matrices. This non-convex problem is related to the well understood phase retrieval problem where $$\vA_i$$ is a rank-1 positive semidefinite matrix. Here we study a general full-rank case which models a number of key applications such as molecular geometry recovery from distance distributions and compound measurements in phaseless diffractive imaging. Most prior work either addresses the rank-1 case or focuses on real measurements. The several papers that address the full-rank complex case adopt the semidefinite relaxation approach and are thus computationally demanding. In this paper we propose a method based on the standard framework comprising a spectral initialization followed by iterative gradient descent updates. We prove that when the number of measurements exceeds the signal's length by some constant factor, a globally optimal solution can be recovered from complex quadratic measurements with high probability. Numerical experiments on simulated data corroborate our theoretical analysis. 
    more » « less
  4. Recently there has been significant theoretical progress on understanding the convergence and generalization of gradient-based methods on nonconvex losses with overparameterized models. Nevertheless, many aspects of optimization and generalization and in particular the critical role of small random initialization are not fully understood. In this paper, we take a step towards demystifying this role by proving that small random initialization followed by a few iterations of gradient descent behaves akin to popular spectral methods. We also show that this implicit spectral bias from small random initialization, which is provably more prominent for overparameterized models, also puts the gradient descent iterations on a particular trajectory towards solutions that are not only globally optimal but also generalize well. Concretely, we focus on the problem of reconstructing a low-rank matrix from a few measurements via a natural nonconvex formulation. In this setting, we show that the trajectory of the gradient descent iterations from small random initialization can be approximately decomposed into three phases: (I) a spectral or alignment phase where we show that that the iterates have an implicit spectral bias akin to spectral initialization allowing us to show that at the end of this phase the column space of the iterates and the underlying low-rank matrix are sufficiently aligned, (II) a saddle avoidance/refinement phase where we show that the trajectory of the gradient iterates moves away from certain degenerate saddle points, and (III) a local refinement phase where we show that after avoiding the saddles the iterates converge quickly to the underlying low-rank matrix. Underlying our analysis are insights for the analysis of overparameterized nonconvex optimization schemes that may have implications for computational problems beyond low-rank reconstruction 
    more » « less
  5. While matrix-covariate regression models have been studied in many existing works, classical statistical and computational methods for the analysis of the regression coefficient estimation are highly affected by high dimensional matrix-valued covariates. To address these issues, this paper proposes a framework of matrix-covariate regression models based on a low-rank constraint and an additional regularization term for structured signals, with considerations of models of both continuous and binary responses. We propose an efficient Riemannian-steepest-descent algorithm for regression coefficient estimation. We prove that the consistency of the proposed estimator is in the order of O(sqrt{r(q+m)+p}/sqrt{n}), where r is the rank, p x m is the dimension of the coefficient matrix and p is the dimension of the coefficient vector. When the rank r is small, this rate improves over O(sqrt{qm+p}/sqrt{n}), the consistency of the existing work (Li et al. in Electron J Stat 15:1909-1950, 2021) that does not apply a rank constraint. In addition, we prove that all accumulation points of the iterates have similar estimation errors asymptotically and substantially attaining the minimax rate. We validate the proposed method through a simulated dataset on two-dimensional shape images and two real datasets of brain signals and microscopic leucorrhea images. 
    more » « less