Over the past several years, a multitude of methods to measure the fairness of a machine learning model have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of fair machine learning with the social sciences of philosophy, sociology, and law. We hope to remedy this issue by accumulating and expounding upon the thoughts and discussions of fair machine learning produced by both social and formal (i.e., machine learning and statistics) sciences in this field guide. Specifically, in addition to giving the mathematical and algorithmic backgrounds of several popular statistics-based fair machine learning metrics used in fair machine learning, we explain the underlying philosophical and legal thoughts that support them. Furthermore, we explore several criticisms of the current approaches to fair machine learning from sociological, philosophical, and legal viewpoints. It is our hope that this field guide helps machine learning practitioners identify and remediate cases where algorithms violate human rights and values.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Learning disentangled causal representations is a challenging problem that has gained significant attention recently due to its implications for extracting meaningful information for downstream tasks. In this work, we define a new notion of causal disentanglement from the perspective of independent causal mechanisms. We propose ICM-VAE, a framework for learning causally disentangled representations supervised by causally related observed labels. We model causal mechanisms using nonlinear learnable flow-based diffeomorphic functions to map noise variables to latent causal variables. Further, to promote the disentanglement of causal factors, we propose a causal disentanglement prior learned from auxiliary labels and the latent causal structure. We theoretically show the identifiability of causal factors and mechanisms up to permutation and elementwise reparameterization. We empirically demonstrate that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
Free, publicly-accessible full text available August 1, 2025 -
With the prevalence of machine learning in many high-stakes decision-making processes, e.g., hiring and admission, it is important to take fairness into account when practitioners design and deploy machine learning models, especially in scenarios with imperfectly labeled data. Multiple-Instance Learning (MIL) is a weakly supervised approach where instances are grouped in labeled bags, each containing several instances sharing the same label. However, current fairness-centric methods in machine learning often fall short when applied to MIL due to their reliance on instance-level labels. In this work, we introduce a Fair Multiple-Instance Learning (FMIL) framework to ensure fairness in weakly supervised learning. In particular, our method bridges the gap between bag-level and instance-level labeling by leveraging the bag labels, inferring high-confidence instance labels to improve both accuracy and fairness in MIL classifiers. Comprehensive experiments underscore that our FMIL framework substantially reduces biases in MIL without compromising accuracy.more » « lessFree, publicly-accessible full text available June 30, 2025
-
Free, publicly-accessible full text available May 30, 2025
-
This paper studies bandit problems where an agent has access to offline data that might be utilized to potentially improve the estimation of each arm’s reward distribution. A major obstacle in this setting is the existence of compound biases from the observational data. Ignoring these biases and blindly fitting a model with the biased data could even negatively affect the online learning phase. In this work, we formulate this problem from a causal perspective. First, we categorize the biases into confounding bias and selection bias based on the causal structure they imply. Next, we extract the causal bound for each arm that is robust towards compound biases from biased observational data. The derived bounds contain theground truth mean reward and can effectively guide the bandit agent to learn a nearly-optimal decision policy. We also conduct regret analysis in both contextual and non-contextual bandit settings and show that prior causal bounds could helpconsistently reduce the asymptotic regret.
Free, publicly-accessible full text available March 25, 2025 -
Ensuring fairness in anomaly detection models has received much attention recently as many anomaly detection applications involve human beings. However, existing fair anomaly detection approaches mainly focus on association-based fairness notions. In this work, we target counterfactual fairness, which is a prevalent causation-based fairness notion. The goal of counterfactually fair anomaly detection is to ensure that the detection outcome of an individual in the factual world is the same as that in the counterfactual world where the individual had belonged to a different group. To this end, we propose a counterfactually fair anomaly detection (CFAD) framework which consists of two phases, counterfactual data generation and fair anomaly detection. Experimental results on a synthetic dataset and two real datasets show that CFAD can effectively detect anomalies as well as ensure counterfactual fairness.more » « less
-
In online recommendation, customers arrive in a sequential and stochastic manner from an underlying distribution and the online decision model recommends a chosen item for each arriving individual based on some strategy. We study how to recommend an item at each step to maximize the expected reward while achieving user-side fairness for customers, i.e., customers who share similar profiles will receive a similar reward regardless of their sensitive attributes and items being recommended. By incorporating causal inference into bandits and adopting soft intervention to model the arm selection strategy, we first propose the d-separation based UCB algorithm (D-UCB) to explore the utilization of the d-separation set in reducing the amount of exploration needed to achieve low cumulative regret. Based on that, we then propose the fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Both theoretical analysis and empirical evaluation demonstrate effectiveness of our algorithms.more » « less