skip to main content


Title: The statistical fairness field guide: perspectives from social and formal sciences
Abstract

Over the past several years, a multitude of methods to measure the fairness of a machine learning model have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of fair machine learning with the social sciences of philosophy, sociology, and law. We hope to remedy this issue by accumulating and expounding upon the thoughts and discussions of fair machine learning produced by both social and formal (i.e., machine learning and statistics) sciences in this field guide. Specifically, in addition to giving the mathematical and algorithmic backgrounds of several popular statistics-based fair machine learning metrics used in fair machine learning, we explain the underlying philosophical and legal thoughts that support them. Furthermore, we explore several criticisms of the current approaches to fair machine learning from sociological, philosophical, and legal viewpoints. It is our hope that this field guide helps machine learning practitioners identify and remediate cases where algorithms violate human rights and values.

 
more » « less
Award ID(s):
2137335 1910284 1920920 1946391
NSF-PAR ID:
10368034
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
AI and Ethics
Volume:
3
Issue:
1
ISSN:
2730-5953
Page Range / eLocation ID:
p. 1-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past several years, multiple different methods to measure the causal fairness of machine learning models have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of causality-based fairness notions with the social sciences of philosophy, sociology, and law. We hope to remedy this issue by accumulating and expounding upon the thoughts and discussions of causality-based fairness notions produced by both social and formal (specifically machine learning) sciences in this field guide. In addition to giving the mathematical backgrounds of several popular causality-based fair machine learning notions, we explain their connection to and interplay with the fields of philosophy and law. Further, we explore several criticisms of the current approaches to causality-based fair machine learning from a sociological viewpoint as well as from a technical standpoint. It is our hope that this field guide will help fair machine learning practitioners better understand how their causality-based fairness notions align with important humanistic values (such as fairness) and how we can, as a field, design methods and metrics to better serve oppressed and marginalized populaces. 
    more » « less
  2. Blum, A (Ed.)
    Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition. 
    more » « less
  3. International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable, Reproducible) and equitable sharing of benefits worldwide, and innumerable other advantages, with slight variation in how an extended or digital specimen model would be executed. Recognizing the need to align the two closely-related concepts, and to provide a place for open discussion around various topics of the Digital Extended Specimen (DES; the current working name for the joined concepts), we initiated a virtual consultation on the discourse platform hosted by the Alliance for Biodiversity Knowledge through GBIF. This platform provided a forum for threaded discussions around topics related and relevant to the DES. The goals of the consultation align with the goals of the Alliance for Biodiversity Knowledge: expand participation in the process, build support for further collaboration, identify use cases, identify significant challenges and obstacles, and develop a comprehensive roadmap towards achieving the vision for a global specification for data integration. In early 2021, Phase 1 launched with five topics: Making FAIR data for specimens accessible; Extending, enriching and integrating data; Annotating specimens and other data; Data attribution; and Analyzing/mining specimen data for novel applications. This round of full discussion was productive and engaged dozens of contributors, with hundreds of posts and thousands of views. During Phase 1, several deeper, more technical, or additional topics of relevance were identified and formed the foundation for Phase 2 which began in May 2021 with the following topics: Robust access points and data infrastructure alignment; Persistent identifier (PID) scheme(s); Meeting legal/regulatory, ethical and sensitive data obligations; Workforce capacity development and inclusivity; Transactional mechanisms and provenance; and Partnerships to collaborate more effectively. In Phase 2 fruitful progress was made towards solutions to some of these complex functional and technical long-term goals. Simultaneously, our commitment to open participation was reinforced, through increased efforts to involve new voices from allied and complementary fields. Among a wealth of ideas expressed, the community highlighted the need for unambiguous persistent identifiers and a dedicated agent to assign them, support for a fully linked system that includes robust publishing mechanisms, strong support for social structures that build trustworthiness of the system, appropriate attribution of legacy and new work, a system that is inclusive, removed from colonial practices, and supportive of creative use of biodiversity data, building a truly global data infrastructure, balancing open access with legal obligations and ethical responsibilities, and the partnerships necessary for success. These two consultation periods, and the myriad activities surrounding the online discussion, produced a wide variety of perspectives, strategies, and approaches to converging the digital and extended specimen concepts, and progressing plans for the DES -- steps necessary to improve access to research-ready data to advance our understanding of the diversity and distribution of life. Discussions continue and we hope to include your contributions to the DES in future implementation plans. 
    more » « less
  4. Abstract Why the new findings matter

    The process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.

    Implications for educational researchers and policy makers

    The progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.

    Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.

     
    more » « less
  5. null (Ed.)
    Machine Learning has become a popular tool in a variety of applications in criminal justice, including sentencing and policing. Media has brought attention to the possibility of predictive policing systems causing disparate impacts and exacerbating social injustices. However, there is little academic research on the importance of fairness in machine learning applications in policing. Although prior research has shown that machine learning models can handle some tasks efficiently, they are susceptible to replicating systemic bias of previous human decision-makers. While there is much research on fair machine learning in general, there is a need to investigate fair machine learning techniques as they pertain to the predictive policing. Therefore, we evaluate the existing publications in the field of fairness in machine learning and predictive policing to arrive at a set of standards for fair predictive policing. We also review the evaluations of ML applications in the area of criminal justice and potential techniques to improve these technologies going forward. We urge that the growing literature on fairness in ML be brought into conversation with the legal and social science concerns being raised about predictive policing. Lastly, in any area, including predictive policing, the pros and cons of the technology need to be evaluated holistically to determine whether and how the technology should be used in policing. 
    more » « less