Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Intermediate polars (IPs) are cataclysmic variables with mildly magnetized white dwarfs (WDs). This analysis of the long-term optical activity of five examples of IPs with accretion discs used data from the Catalina Real-time Transient Survey, Digital Access to a Sky Century @ Harvard (DASCH) and the American Association of Variable Star Observers (AAVSO). It is shown that each of these IPs had their most preferred value of absolute magnitude Mopt, even if it significantly varied on the superorbital time-scale. The values of Mopt of these IPs were in the zone of thermal-viscous instability (TVI) of the disc most of the time. The properties of a series of outbursts of V426 Oph can be explained by an intermittently operating TVI. The activity of TV Col and DW Cnc is interpreted as caused by a gradually variable mass inflow rate from the secondary to a cool disc. The mass transfer rate from the secondary varied on a well-determined time-scale. It is shown that Mopt of EI UMa, close to the peaks of outbursts of non-magnetic dwarf novae, fluctuated on the time-scale of days; it also produced short flares, ascribed to the bursts of matter from the donor. HY Leo, with a presumably cool disc, fluctuated between its high and low states. A temporary brightening from an extended low state is ascribed to a short, intense burst of matter from the donor to the remaining cool disc or torus.more » « less
-
Abstract This analysis of the long-term optical activity of the propellers AE Aqr and AR Sco uses data from the Catalina Real-time Transient Survey, DASCH, and AAVSO. The site and character of the emissions from the phenomena caused by the magnetic field of the white dwarf (WD) vary from system to system. The histogram of intensities of the ensemble of flares of AE Aqr suggests that the long-term activity consists of a large variety of the peak magnitudes of the flares, with the probability of their detection gradually decreasing with increasing intensity. Any increase of activity only leads to an increase of the number of blobs of the transferring matter. We also detected a season with a transient decrease or even a cessation of the mass outflow from the donor to the lobe of the WD. The very strong orbital modulation of AR Sco is most stable in the phases of the extrema of brightness for about a century; its minor changes suggest that the trailing side of the synchrotron-emitting region is more unstable than the leading side.more » « less
-
Abstract KV UMa (XTE J1118+480) is an X-ray binary that is known to undergo outbursts in 2000 and 2005. This paper presents the discovery of a large outburst starting in 1927 on the archival photographic plates and an analysis of the long-term optical activity of this system. We used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). We placed the 1927 outburst in the context of the observed outbursts of KV UMa. We show that it is a double event, with a precursor similar to the one of the outbursts in 2000. We find a big difference between the 1927 and 2000 outbursts as regards the length of the gap between the precursor and the main outburst. It is more than 250 d in 1927, whereas it is about 20 d in 2000, although the brightnesses of all peaks are mutually comparable. We also show that the individual optical outbursts of KV UMa differ from each other by the duration of the stage of a slow decline of brightness (sometimes roughly a plateau). This determines the length of the entire main outburst. Both the peak magnitude and the brightness of the outburst when the slow decline transitions to a steep final decaying branch plausibly reproduce in all three outbursts. In the interpretation, the short duration of the precursor is caused by the fact that only the thermal-viscous instability operated in the accretion disk while also the tidal instability of the disk contributed in the subsequent main outburst.more » « less
-
RV Tau variables are a subclass of post-Asymptotic Giant Branch stars in binary systems surrounded by a circumbinary disk. Their signature light curves display alternating deep and shallow minima due to pulsations. The RVb-type subset exhibits an additional longer brightness modulation due to disk occultation. It has been established that binarity plays a key role in the dynamics and evolution of this short-lived post-AGB phase however the interconnection of the different physical components in these systems is still not well understood. We present multiwavelength observations of the prototypical RVb variable U Mon (mean Vmag ~6.4; D ~1 kpc)from XMM-Newton, SMA, DASCH, and AAVSO. U Mon has a pulsation period of 91.48 days and a longer brightness modulation period of 2451 days, consistent with the radial-velocity binary orbital period. We estimated the mass of the binary and the orbital semi-major axis which is consistent with the interaction of the binary with the inner edge of the circumbinary disk. U Mon hosts a 10 G magnetic field at its stellar surface which may be linked to X-rays detected by XMM-Newton. The X-ray emission is characteristic of a hot plasma (10 MK) with L/L~10. Based on our SMA observations, U Mon has a highly-inclined extended disk. From U Mon's combined DASCH and AAVSO data, there is evidence that U Mon has an even longer trend possibly due to inner-disk precession. We predict that the next deepest long-term minimum will be within the next decade.more » « less
An official website of the United States government

Full Text Available