skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1910844

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convolutional neural networks (CNNs) play an important role in today's mobile and edge computing systems for vision-based tasks like object classification and detection. However, state-of-the-art methods on CNN acceleration are trapped in either limited practical latency speed-up on general computing platforms or latency speed-up with severe accuracy loss. In this paper, we propose a spatial-based dynamic CNN acceleration framework, NeuLens, for mobile and edge platforms. Specially, we design a novel dynamic inference mechanism, assemble region-aware convolution (ARAC) supernet, that peels off redundant operations inside CNN models as many as possible based on spatial redundancy and channel slicing. In ARAC supernet, the CNN inference flow is split into multiple independent micro-flows, and the computational cost of each can be autonomously adjusted based on its tiled-input content and application requirements. These micro-flows can be loaded into hardware like GPUs as single models. Consequently, its operation reduction can be well translated into latency speed-up and is compatible with hardware-level accelerations. Moreover, the inference accuracy can be well preserved by identifying critical regions on images and processing them in the original resolution with large micro-flow. Based on our evaluation, NeuLens outperforms baseline methods by up to 58% latency reduction with the same accuracy and by up to 67.9% accuracy improvement under the same latency/memory constraints. 
    more » « less
  2. Deep neural networks (DNNs) are being applied to various areas such as computer vision, autonomous vehicles, and healthcare, etc. However, DNNs are notorious for their high computational complexity and cannot be executed efficiently on resource constrained Internet of Things (IoT) devices. Various solutions have been proposed to handle the high computational complexity of DNNs. Offloading computing tasks of DNNs from IoT devices to cloud/edge servers is one of the most popular and promising solutions. While such remote DNN services provided by servers largely reduce computing tasks on IoT devices, it is challenging for IoT devices to inspect whether the quality of the service meets their service level objectives (SLO) or not. In this paper, we address this problem and propose a novel approach named QIS (quality inspection sampling) that can efficiently inspect the quality of the remote DNN services for IoT devices. To realize QIS, we design a new ID-generation method to generate data (IDs) that can identify the serving DNN models on edge servers. QIS inserts the IDs into the input data stream and implements sampling inspection on SLO violations. The experiment results show that the QIS approach can reliably inspect, with a nearly 100% success rate, the service qualtiy of remote DNN services when the SLA level is 99.9% or lower at the cost of only up to 0.5% overhead. 
    more » « less
  3. Object detection in high-resolution aerial images is a challenging task because of 1) the large variation in object size, and 2) non-uniform distribution of objects. A common solution is to divide the large aerial image into small (uniform) crops and then apply object detection on each small crop. In this paper, we investigate the image cropping strategy to address these challenges. Specifically, we propose a Density-Map guided object detection Network (DMNet), which is inspired from the observation that the object density map of an image presents how objects distribute in terms of the pixel intensity of the map. As pixel intensity varies, it is able to tell whether a region has objects or not, which in turn provides guidance for cropping images statistically. DMNet has three key components: a density map generation module, an image cropping module and an object detector. DMNet generates a density map and learns scale information based on density intensities to form cropping regions. Extensive experiments show that DMNet achieves state-of-the-art performance on two popular aerial image datasets, i.e. VisionDrone and UAVDT. 
    more » « less
  4. We propose the width-resolution mutual learning method (MutualNet) to train a network that is executable at dynamic resource constraints to achieve adaptive accuracy-efficiency trade-offs at runtime. Our method trains a cohort of sub-networks with different widths (i.e., number of channels in a layer) using different input resolutions to mutually learn multi-scale representations for each sub-network. It achieves consistently better ImageNet top-1 accuracy over the state-of-the-art adaptive network US-Net under different computation constraints, and outperforms the best compound scaled MobileNet in EfficientNet by 1.5%. The superiority of our method is also validated on COCO object detection and instance segmentation as well as transfer learning. Surprisingly, the training strategy of MutualNet can also boost the performance of a single network, which substantially outperforms the powerful AutoAugmentation in both efficiency (GPU search hours: 15000 vs. 0) and accuracy (ImageNet: 77.6% vs. 78.6%). Code is available at https://github.com/ aoyang1122/MutualNet 
    more » « less