skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1910853

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we proposeMiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike existing vision- or wearable-based sleep monitoring systems,MiSleepis not privacy-invasive and does not require users to wear anything on their body.MiSleepleverages knowledge of human anatomical features and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased imaging, and specularity in signals.MiSleepbuilds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction,MiSleepdesigns a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluateMiSleepwith real data collected from Commercial-Off-The-Shelf mmWave devices for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe thatMiSleepidentifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth, respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications. 
    more » « less