skip to main content

Search for: All records

Award ID contains: 1910950

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As countries look toward re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing works which aim at developing risk scores either rely on compartmental model-based reproduction numbers (which assume uniform population mixing) or develop coarse-grain spatial scores based on reproduction number (R0) and macro-level density-based mobility statistics. Instead, in this article, we develop a Hawkes process-based technique to assign relatively fine-grain spatial and temporal risk scores by leveraging high-resolution mobility data based on cell-phone originated location signals. While COVID-19 risk scores also depend on a number of factors specific to an individual, including demography and existing medical conditions, the primary mode of disease transmission is via physical proximity and contact. Therefore, we focus on developing risk scores based on location density and mobility behaviour. We demonstrate the efficacy of the developed risk scores via simulation based on real-world mobility data. Our results show that fine-grain spatiotemporal risk scores based on high-resolution mobility data can provide useful insights and facilitate safe re-opening.
    Free, publicly-accessible full text available June 30, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available March 29, 2023
  4. Mobile apps and location-based services generate large amounts of location data. Location density information from such datasets benefits research on traffic optimization, context-aware notifications and public health (e.g., disease spread). To preserve individual privacy, one must sanitize location data, which is commonly done using differential privacy (DP). Existing methods partition the data domain into bins, add noise to each bin and publish a noisy histogram of the data. However, such simplistic modelling choices fall short of accurately capturing the useful density information in spatial datasets and yield poor accuracy. We propose a machine-learning based approach for answering range count queries on location data with DP guarantees. We focus on countering the sources of error that plague existing approaches (i.e., noise and uniformity error) through learning, and we design a neural database system that models spatial data such that density features are preserved, even when DP-compliant noise is added. We also devise a framework for effective system parameter tuning on top of public data, which helps set important system parameters without expending scarce privacy budget. Extensive experimental results on real datasets with heterogeneous characteristics show that our proposed approach significantly outperforms the state of the art.
    Free, publicly-accessible full text available January 1, 2023
  5. A geo-marketplace allows users to be paid for their location data. Users concerned about privacy may want to charge more for data that pinpoints their location accurately, but may charge less for data that is more vague. A buyer would prefer to minimize data costs, but may have to spend more to get the necessary level of accuracy. We call this interplay between privacy, utility, and price spatial privacy pricing. We formalize the issues mathematically with an example problem of a buyer deciding whether or not to open a restaurant by purchasing location data to determine if the potential number of customers is sufficient to open. The problem is expressed as a sequential decision making problem, where the buyer first makes a series of decisions about which data to buy and concludes with a decision about opening the restaurant or not. We present two algorithms to solve this problem, including experiments that show they perform better than baselines.
  6. Real-time outlier detection in data streams has drawn much attention recently as many applications need to be able to detect abnormal behaviors as soon as they occur. The arrival and departure of streaming data on edge devices impose new challenges to process the data quickly in real-time due to memory and CPU limitations of these devices. Existing methods are slow and not memory efficient as they mostly focus on quick detection of inliers and pay less attention to expediting neighbor searches for outlier candidates. In this study, we propose a new algorithm, CPOD, to improve the efficiency of outlier detections while reducing its memory requirements. CPOD uses a unique data structure called "core point" with multi-distance indexing to both quickly identify inliers and reduce neighbor search spaces for outlier candidates. We show that with six real-world and one synthetic dataset, CPOD is, on average, 10, 19, and 73 times faster than M_MCOD, NETS, and MCOD, respectively, while consuming low memory.