skip to main content

Search for: All records

Award ID contains: 1911230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 29, 2024
  2. Free, publicly-accessible full text available October 16, 2024
  3. Ground truth depth information is necessary for many computer vision tasks. Collecting this information is chal-lenging, especially for outdoor scenes. In this work, we propose utilizing single-view depth prediction neural networks pre-trained on synthetic scenes to generate relative depth, which we call pseudo-depth. This approach is a less expen-sive option as the pre-trained neural network obtains ac-curate depth information from synthetic scenes, which does not require any expensive sensor equipment and takes less time. We measure the usefulness of pseudo-depth from pre-trained neural networks by training indoor/outdoor binary classifiers with and without it. We also compare the difference in accuracy between using pseudo-depth and ground truth depth. We experimentally show that adding pseudo-depth to training achieves a 4.4% performance boost over the non-depth baseline model on DIODE, a large stan-dard test dataset, retaining 63.8% of the performance boost achieved from training a classifier on RGB and ground truth depth. It also boosts performance by 1.3% on another dataset, SUN397, for which ground truth depth is not avail-able. Our result shows that it is possible to take information obtained from a model pre-trained on synthetic scenes and successfully apply it beyond the synthetic domain to real-world data. 
    more » « less
  4. As machine learning methods become more powerful and capture more nuances of human behavior, biases in the dataset can shape what the model learns and is evaluated on. This paper explores and attempts to quantify the uncertainties and biases due to annotator demographics when creating sentiment analysis datasets. We ask >1000 crowdworkers to provide their demographic information and annotations for multimodal sentiment data and its component modalities. We show that demographic differences among annotators impute a significant effect on their ratings, and that these effects also occur in each component modality. We compare predictions of different state-of-the-art multimodal machine learning algorithms against annotations provided by different demographic groups, and find that changing annotator demographics can cause >4.5 in accuracy difference when determining positive versus negative sentiment. Our findings underscore the importance of accounting for crowdworker attributes, such as demographics, when building datasets, evaluating algorithms, and interpreting results for sentiment analysis.

    more » « less
  5. Recent volumetric 3D reconstruction methods can produce very accurate results, with plausible geometry even for unobserved surfaces. However, they face an undesirable trade-off when it comes to multi-view fusion. They can fuse all available view information by global averaging, thus losing fine detail, or they can heuristically cluster views for local fusion, thus restricting their ability to consider all views jointly. Our key insight is that greater detail can be retained without restricting view diversity by learning a view-fusion function conditioned on camera pose and image content. We propose to learn this multi-view fusion using a transformer. To this end, we introduce VoRTX, 1 an end-to-end volumetric 3D reconstruction network using transformers for wide-baseline, multi-view feature fusion. Our model is occlusion-aware, leveraging the transformer architecture to predict an initial, projective scene geometry estimate. This estimate is used to avoid back-projecting image features through surfaces into occluded regions. We train our model on ScanNet and show that it produces better reconstructions than state-of-the-art methods. We also demonstrate generalization without any fine-tuning, outperforming the same state-of-the-art methods on two other datasets, TUM-RGBD and ICL-NUIM. 
    more » « less
  6. We present 3DVNet, a novel multi-view stereo (MVS) depth-prediction method that combines the advantages of previous depth-based and volumetric MVS approaches. Our key idea is the use of a 3D scene-modeling network that iteratively updates a set of coarse depth predictions, resulting in highly accurate predictions which agree on the underlying scene geometry. Unlike existing depth-prediction techniques, our method uses a volumetric 3D convolutional neural network (CNN) that operates in world space on all depth maps jointly. The network can therefore learn meaningful scene-level priors. Furthermore, unlike existing volumetric MVS techniques, our 3D CNN operates on a feature-augmented point cloud, allowing for effective aggregation of multi-view information and flexible iterative refinement of depth maps. Experimental results show our method exceeds state-of-the-art accuracy in both depth prediction and 3D reconstruction metrics on the ScanNet dataset, as well as a selection of scenes from the TUM-RGBD and ICL-NUIM datasets. This shows that our method is both effective and generalizes to new settings. 
    more » « less