skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1911335

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous work suggests that Auroral Kilometric Radiation (AKR) leaks to low altitudes. To investigate this phenomenon, wideband wave measurements have been conducted simultaneously at South Pole, Antarctica, and at the Cluster satellites, during 35 intervals in 2018–2020. Leaked AKR is observed ∼5% of the time at South Pole and escaping AKR ∼31% of the time at Cluster satellites. Both types of AKR are composed of fine structure, and similar fine structure is often observed simultaneously in the AKR at the different locations. Around 0317 UT on 29 June 2020, identical features were observed simultaneously. Cluster interferometry shows that the footprint of the source field line during this event lies within a few hundred kilometers of South Pole. The estimated emitted power of the escaping AKR observed at Cluster in this event exceeds that of the leaked AKR observed at South Pole by many orders of magnitude, suggesting that mode conversion involved in generating leaked AKR is relatively inefficient. AKR fine structure which is identical at the two locations comprises ∼0.1%–0.3% of AKR observed at Cluster when the South Pole receiver operates, and ∼2% of AKR observed at South Pole when at least one Cluster satellite is tuned to the appropriate frequency range. The relatively low occurrence rates of coincident fine structure may be attributed partly to geometric and beaming considerations but also suggest that processes involved in generating leaked AKR at levels detectable at ground level have lower probability than those generating escaping AKR at levels detectable by distant spacecraft. 
    more » « less
  2. Abstract A low‐ and medium‐frequency (LF/MF) receiving system at South Pole Station, using a wide‐beam dipole antenna, measured continuous fully sampled waveforms of more than 100 LF auroral hiss events between June and October 2019. Spectra of fluctuations of LF auroral hiss intensity at selected frequencies between 110 and 530 kHz showed these are broadband, with spectral power monotonically decreasing to an upper bound typically 20–60 Hz, comparable to frequencies reported for optical flickering aurora. Occasionally intervals of periodic fluctuations in auroral hiss intensity occurred, in most cases lasting only tens of cycles. On September 1, 2019, periodic fluctuations lasted thousands of cycles during two 30‐s intervals, at frequencies 125–145 Hz. Close examination showed these to be dispersed with low frequencies arriving before high frequencies by approximately 4.5 ms per 100 kHz. Ray‐tracing calculations and consideration of the Temerin et al. (1986, 1993) mechanisms of flickering aurora shows that the September 1 flickering auroral hiss observations are consistent with resonant amplification of whistler mode noise by an electron beam accelerated and modulated by electromagnetic proton cyclotron waves originating near 4,500 km, with the wave excitation taking place at 2,000–3,000 km. 
    more » « less