skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: South Pole Station Ground‐Based and Cluster Satellite Measurements of Leaked and Escaping Auroral Kilometric Radiation
Abstract Previous work suggests that Auroral Kilometric Radiation (AKR) leaks to low altitudes. To investigate this phenomenon, wideband wave measurements have been conducted simultaneously at South Pole, Antarctica, and at the Cluster satellites, during 35 intervals in 2018–2020. Leaked AKR is observed ∼5% of the time at South Pole and escaping AKR ∼31% of the time at Cluster satellites. Both types of AKR are composed of fine structure, and similar fine structure is often observed simultaneously in the AKR at the different locations. Around 0317 UT on 29 June 2020, identical features were observed simultaneously. Cluster interferometry shows that the footprint of the source field line during this event lies within a few hundred kilometers of South Pole. The estimated emitted power of the escaping AKR observed at Cluster in this event exceeds that of the leaked AKR observed at South Pole by many orders of magnitude, suggesting that mode conversion involved in generating leaked AKR is relatively inefficient. AKR fine structure which is identical at the two locations comprises ∼0.1%–0.3% of AKR observed at Cluster when the South Pole receiver operates, and ∼2% of AKR observed at South Pole when at least one Cluster satellite is tuned to the appropriate frequency range. The relatively low occurrence rates of coincident fine structure may be attributed partly to geometric and beaming considerations but also suggest that processes involved in generating leaked AKR at levels detectable at ground level have lower probability than those generating escaping AKR at levels detectable by distant spacecraft.  more » « less
Award ID(s):
1911335
PAR ID:
10375860
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fischer, G; Jackman, C M; Louis, C K; Sulaiman, A H; Zucca, P (Ed.)
    There is mounting evidence of a component of terrestrial auroral kilometric radiation (AKR) that is converted to whistler mode and radiated downward toward the planet, observable even at ground level. Three years of data from South Pole Station in 2018-2020 provide statistics of characteristics of leaked AKR at ground level. The events occur in an approximately 90--day interval around winter solstice, apparently requiring darkness in the ionosphere to be observed at ground level. They favor pre--midnight/midnight magnetic local times, which is consistent with the connection of AKR, observed in space, to auroral substorms. The frequency distribution of ground{level AKR is truncated compared to that observed in space, with primarily the higher end of the frequency range being observed, 400--600 kHz, corresponding to the low altitude range of source heights, 2500-3500 km, assuming generation at the electron cyclotron frequency. Approximately half of the events have maximum radiance exceeding 1.5×10^18 W/m2/Hz, with the strongest events exceeding 10^16 W/m2/Hz; these intensities are up to two orders of magnitude lower than those observed in the ionosphere, suggesting that most of the leaked AKR is at large wave normal angles that cannot penetrate the Earth{ionosphere boundary. 
    more » « less
  2. Abstract Recent studies of Pc5‐band (150–600 s) ultralow frequency waves found that foreshock disturbances can be a driver of dayside compressional waves and field line resonance, which are two typical Pc5 wave modes in the dayside magnetosphere. However, it is difficult to find spatial structure of dayside Pc5 waves using a small number of satellites or ground magnetometers. This study determines 2‐D structure of dayside Pc5 waves and their driver by utilizing coordinated observations by the THEMIS satellites and the all‐sky imager at South Pole during two series of Pc5 waves on 29 June 2008. These Pc5 waves were found to be field line resonances (FLRs) and driven by foreshock disturbances. The ground‐based all‐sky imager at South Pole shows that periodic poleward moving arcs occurred simultaneously with the FLRs near the satellite footprints over ~3°latitude and had the same frequencies as FLRs. This indicates that they are the auroral signature of the FLRs. The azimuthal distribution of the FLRs in the magnetosphere and their north‐south width in the ionosphere were further determined in the 2‐D images. In the first case, the FLRs distribute symmetrically in the prenoon and postnoon regions with out‐of‐phase oscillation as the odd toroidal mode in the equatorial plane. In the second case, the azimuthal wavelengths of the 350–500 s and 300–450 s period waves were ~8.0 and ~5.2 Re in the equatorial plane. It also shows a fine azimuthal structure embedded in the large‐scale arcs, indicating that a high azimuthal wave number (m~ 140) mode wave coupled with the low‐wave number FLRs. 
    more » « less
  3. The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial satellites at millimeter wavelengths. Satellite thermal emission is shown to be detectable at high signal-to-noise on timescales as short as a few tens of milliseconds. An algorithm for downloading orbital information and tracking known satellites given observer constraints and time-ordered observatory pointing is described. Consequences for cosmological surveys and short-duration transient searches are discussed, revealing that the integrated thermal emission from all large satellites does not contribute significantly to the SPT-3G survey intensity map. Measured satellite positions are found to be discrepant from their two-line element (TLE) derived ephemerides up to several arcminutes which may present a difficulty in cross-checking or masking satellites from short-duration transient searches. 
    more » « less
  4. On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems. 
    more » « less
  5. Abstract Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites. 
    more » « less