skip to main content

Search for: All records

Award ID contains: 1911375

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rationale

    Nitrogen isotopic compositions (δ15N) of source and trophic amino acids (AAs) are crucial tracers of N sources and trophic enrichments in diverse fields, including archeology, astrobiochemistry, ecology, oceanography, and paleo‐sciences. The current analytical technique using gas chromatography‐combustion‐isotope ratio mass spectrometry (GC/C/IRMS) requires derivatization, which is not compatible with some key AAs. Another approach using high‐performance liquid chromatography‐elemental analyzer‐IRMS (HPLC/EA/IRMS) may experience coelution issues with other compounds in certain types of samples, and the highly sensitive nano‐EA/IRMS instrumentations are not widely available.


    We present a method for high‐precision δ15N measurements of AAs (δ15N‐AA) optimized for canonical source AA‐phenylalanine (Phe) and trophic AA‐glutamic acid (Glu). This offline approach entails purification and separation via high‐pressure ion‐exchange chromatography (IC) with automated fraction collection, the sequential chemical conversion of AA to nitrite and then to nitrous oxide (N2O), and the final determination of δ15N of the produced N2O via purge‐and‐trap continuous‐flow isotope ratio mass spectrometry (PT/CF/IRMS).


    The cross‐plots of δ15N of Glu and Phe standards (four different natural‐abundance levels) generated by this method and their accepted values have a linear regression slope of 1 and small intercepts demonstrating high accuracy. The precisions were 0.36‰–0.67‰ for Phe standards and 0.27‰–0.35‰ for Glu standards. Our method andmore »the GC/C/IRMS approach produced equivalent δ15N values for two lab standards (McCarthy Lab AA mixture and cyanobacteria) within error. We further tested our method on a wide range of natural sample matrices and obtained reasonable results.


    Our method provides a reliable alternative to the current methods for δ15N‐AA measurement as IC or HPLC‐based techniques that can collect underivatized AAs are widely available. Our chemical approach that converts AA to N2O can be easily implemented in laboratories currently analyzing δ15N of N2O using PT/CF/IRMS. This method will help promote the use of δ15N‐AA in important studies of N cycling and trophic ecology in a wide range of research areas.

    « less
  2. In 1991, the Texas A&M University System was one of the first six Louis Stokes Alliance for Minority Participation (LSAMP) awardees. In the three decades of programming, several high impact practices (HIP) have been emphasized. One of them, undergraduate research (UR), is discussed. All members of the Alliance are part of the Texas A&M University System and undergraduate research was supported through a variety of initiatives on the Alliance campuses. Data presented chronicle student perspectives. Topics addressed are the impact of involvement in undergraduate research on academic outcomes, interest in further engagement with research, interest in graduate school, and career goals as well as the patterns of research engagement participants experienced and the forms of learning that resulted. These materials are presented regarding an audience that was overwhelmingly underrepresented minority students all of whom were pursuing science, technology, engineering, or mathematics (STEM) degrees. Students reported UR influenced their academic outcomes, further engagement with research, interest in graduate school, and career goals while facilitating learning and skill development. These findings, for URM students from institutions with three different Carnegie classifications that are a predominantly white institution, two Hispanic-serving institutions (HSIs), and a historically Black college or university (HBCU), parallel outcomes reportedmore »in the literature for investigations focused on general student populations suggesting that UR benefits are generalizable regardless of institution type and ethnicity/race of the participant. Findings also suggest that these patterns apply regardless of the student’s year in school. Material presented details the research elements commonly included in TAMUS LSAMP UR experiences and in which areas students reported the most learning. Thus, this document touches on topics important in addressing development of an adequate, well-trained, and diverse STEM workforce. It also confirms the efficacy of a highly replicable approach to facilitating a HIP, undergraduate research, with students from underrepresented groups.« less
  3. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate responsemore »for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis.« less
  4. Protests against racial injustice have been increasing in the United States. Universities often rapidly respond to acts of injustice through public statements about their position to uphold the equality of all people. To gauge the desires and concerns around discussing events causing social unrest in engineering classrooms specifically, the engineering education faculty chair of a large university conducted discussions with both students and faculty regarding its place in their classrooms. This paper describes the emerging themes from survey responses using coding and grounded theory. Reactions from students and faculty were decidedly different. Most students stressed the importance of discussing such topics in class with their engineering faculty, while most faculty emphasized their concerns with doing so due to their lack of training to effectively handle such topics. This paper describes the evaluation of student and faculty responses and its implications for supporting diversity and inclusion in the engineering classroom.
  5. The Texas A&M University System was one of the first six Louis Stokes Alliance for Minority Participation (LSAMP) awardees. All current members of the Alliance are part of the Texas A&M University System. Many high impact practices (HIP) have been emphasized in the Alliance’s 30 years of programming with Diversity/Global Learning as a focus in the last 14 years. Diversity/Global Learning has been supported in two formats on the Alliance campuses, through traditional study abroad programming and a College of Engineering initiative. Data presented were derived from a number of sources, project evaluation information regarding student perspectives and outcomes, survey research conducted by an independent party, and institutional data and online platforms accessed to assess student outcomes. Triangulation was completed between data sets. Results indicate both forms of programming were efficacious for underrepresented and first-generation students. Outcomes reported were substantial increases in awareness of and interest in graduate school, increases in cultural learning, confidence in travel outside the United States, learning relevant to major, commitment to continuing involvement with research, interest in another similar experience, and willingness to consider employment outside the U.S. Participants reported statistically significant growth in personal, professional, and research skills. They persisted, participated in additional study abroad experiences,more »and graduated at higher rates than their institutional peers with approximately 90% of informants indicating intention to consider graduate school in the future, over 40% indicating intent to attend immediately following undergraduate study, and 39.4% of 2007–2014 participants enrolling in graduate school by the spring of 2021. Programming described is replicable at and likely to be efficacious for a wide variety of institutions of higher education.« less
  6. Akerson, V. ; Sahin, I. (Ed.)
    The Texas A&M University (TAMU) Louis Stokes Alliance for Minority Participation (LSAMP) office provided funding to the Texas A&M University College of Engineering to support student participation in the Engineering Learning Community Introduction to Research (ELCIR) program. ELCIR is a two-week, study abroad, research program implemented in a learning community pattern. ELCIR has three purposes: (1) to expose sophomores to research, (2) to introduce students to cultural differences and global challenges, and (3) to provide students with the basic tools to prepare them for future research involvement. Participation in the multi-term program, which takes place at TAMU and in the Yucatan Peninsula, is limited to first-generation college students and/or students from underrepresented populations. The external evaluator for TAMU System LSAMP developed a survey for students to complete after their participation in the ELCIR international experience. Survey questions were designed to identify the impact of participation in ELCIR on students and gather participant suggestions for improvement of future LSAMP-supported international research experiences. The evaluator compiled information gathered from 92 participants during five years of ELCIR programming. This paper describes the participants’ self-reports of experience with and continued interest in study abroad, interest in another similar experience, subsequent involvement with undergraduate research,more »and ELCIR’s impact on their confidence regarding international travel, their awareness of, interest in, and plans regarding graduate school, their educational or career plans, and interest in employment outside the United States. Interest in or increases in interest in international travel, study abroad programming, graduate school, and employment outside the United States were found. These findings can inform engineering education programming for first-generation and minority students, an area of national need, for institutions across the United States.« less