skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1911925

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Immunopathology, or the harm caused to an organism’s own tissues during the activation of its immune system, carries substantial costs. Moreover, avoiding this self-harm may be an important mechanism underlying tolerance of infection, helping to reducing fitness costs without necessarily clearing parasites. Despite the apparent benefits of minimizing immunopathology, such damage persists across a range of host species. Prior work has explored a trade-off with resistance during a single infection as a potential driver of this persistence, with some collateral damage being unavoidable when killing parasites. Here, we present an additional trade-off that could favor the continued presence of immunopathology: robust immune responses during initial infection (e.g., innate immunity in vertebrates) can induce stronger memory (adaptive immunity), offering protection from future infections. We explore this possibility in an adaptive dynamics framework, using theoretical models parameterized from an ecologically relevant host-parasite system, house finches (Haemorhous mexicanus) infected with the bacterial pathogen, Mycoplasma gallisepticum. We find that some degree of immunopathology is often favored when immunopathology during first infection either reduces susceptibility to or enhances recovery from second infection. Further, interactions among factors like transmission rate, recovery rate, background mortality, and pathogen virulence also shape these evolutionary dynamics. Most notably, the evolutionary stability of investment in immunopathology is highly dependent upon the mechanism by which hosts achieve secondary protection (susceptibility vs. recovery), with the potential for abrupt evolutionary shifts between high and low investment under certain conditions. These results highlight the potential for immune memory to play an important role in the evolutionary persistence of immunopathology and the need for future empirical research to reveal the links between immunopathology during initial infections and longer-term immune protection. 
    more » « less
  2. Abstract Animal space use and spatial overlap can have important consequences for population‐level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter‐individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife.Bank voles (Clethrionomys glareolus) are a tractable study system to investigate spatial patterns of wildlife and are amenable to experimental manipulations. We conducted a replicated, factorial field experiment in which we provided supplementary food and removed helminths in vole populations in natural forest habitat and monitored vole space use and spatial overlap using capture–mark–recapture methods.Using network analysis, we quantified vole space use and spatial overlap. We compared the effects of food supplementation and helminth removal and investigated the impacts of season, sex and reproductive status on space use and spatial overlap.We found that food supplementation decreased vole space use while helminth removal increased space use. Space use also varied by sex, reproductive status and season. Spatial overlap was similar between treatments despite up to threefold differences in population size.By quantifying the spatial effects of food availability and macroparasite infection on wildlife populations, we demonstrate the potential for space use and population density to trade‐off and maintain consistent spatial overlap in wildlife populations. This has important implications for spatial processes in wildlife including pathogen transmission. 
    more » « less
  3. Abstract As anthropogenic factors continue to degrade natural areas, habitat management is needed to restore and maintain biodiversity. However, the impacts of different habitat management regimes on ecosystems have largely focused on vegetation analyses, with limited evaluation of downstream effects on wildlife. We compared the effects of grassland management regimes (prescribed burning, cutting/haying, or no active management) on rodent communities and the viruses they hosted. Rodents were trapped in 13 existing grassland sites in Northwest Arkansas, USA during 2020 and 2021. Rodent blood samples were screened for antibodies against three common rodent‐borne virus groups: orthohantaviruses, arenaviruses, and orthopoxviruses. We captured 616 rodents across 5953 trap nights. Burned and unmanaged sites had similarly high abundance and diversity, but burned sites had a higher proportion of grassland species than unmanaged sites; cut sites had the highest proportion of grassland species but the lowest rodent abundance and diversity. A total of 38 rodents were seropositive for one of the three virus groups (34 orthohantavirus, three arenavirus, and one orthopoxvirus). Thirty‐six seropositive individuals were found in burned sites, and two orthohantavirus‐seropositive individuals were found in cut sites. Cotton rats and prairie voles, two grassland species, accounted for 97% of the rodents seropositive for orthohantavirus. Our study indicates that prescribed burns lead to a diverse and abundant community of grassland rodent species compared with other management regimes; as keystone taxa, these results also have important implications for many other species in food webs. Higher prevalence of antibodies against rodent‐borne viruses in burned prairies shows an unexpected consequence likely resulting from robust host population densities supported by the increased habitat quality of these sites. Ultimately, these results provide empirical evidence that can inform grassland restoration and ongoing management strategies. 
    more » « less
  4. Abstract In FocusBecker, D. J., Albery, G. F., Kessler, M. K., Lunn, T. J., Falvo, C. A., Czirják, G. Á., Martin, L. B., & Plowright, R. K. (2020). Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence.Journal of Animal Ecology,89, 972–995. Ecoimmunology seeks to identify and explain natural variation in immune function. Most research so far has focused on differences among individuals within populations, which are often driven by trade‐offs in resource allocation between energetically costly immunity and competing processes such as reproduction. In their review article, Becker et al. (2020) have proposed a framework to explicitly address habitat‐ and population‐level differences in wildlife immune phenotypes. Termed macroimmunology, this concept integrates principles from ecoimmunology and macroecology. Becker et al. (2020) have highlighted three non‐mutually exclusive habitat features that are likely to vary at spatial scales and influence immune function: (a) parasite pressure, (b) abiotic and biotic factors and (c) anthropogenic changes. However, a large and robust body of literature suitable for synthesis to detect macroimmunology patterns and effect sizes is not yet available. Through their systematic review and critical assessment, Becker et al. (2020) identified common problems in existing research that hinders spatial inferences, such as a need for spatial replication in study design and statistical analyses that account for spatial dependence. Overall, macroimmunology has the potential to identify and even predict spatial patterns in immune phenotypes that form the mechanistic underpinnings of important wildlife disease processes, and this review represents an important step to realizing these goals. 
    more » « less
  5. Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual’s infection history. 
    more » « less
  6. null (Ed.)