skip to main content

Search for: All records

Award ID contains: 1911925

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As anthropogenic factors continue to degrade natural areas, habitat management is needed to restore and maintain biodiversity. However, the impacts of different habitat management regimes on ecosystems have largely focused on vegetation analyses, with limited evaluation of downstream effects on wildlife. We compared the effects of grassland management regimes (prescribed burning, cutting/haying, or no active management) on rodent communities and the viruses they hosted. Rodents were trapped in 13 existing grassland sites in Northwest Arkansas, USA during 2020 and 2021. Rodent blood samples were screened for antibodies against three common rodent‐borne virus groups: orthohantaviruses, arenaviruses, and orthopoxviruses. We captured 616 rodents across 5953 trap nights. Burned and unmanaged sites had similarly high abundance and diversity, but burned sites had a higher proportion of grassland species than unmanaged sites; cut sites had the highest proportion of grassland species but the lowest rodent abundance and diversity. A total of 38 rodents were seropositive for one of the three virus groups (34 orthohantavirus, three arenavirus, and one orthopoxvirus). Thirty‐six seropositive individuals were found in burned sites, and two orthohantavirus‐seropositive individuals were found in cut sites. Cotton rats and prairie voles, two grassland species, accounted for 97% of the rodents seropositive for orthohantavirus. Our study indicates that prescribed burns lead to a diverse and abundant community of grassland rodent species compared with other management regimes; as keystone taxa, these results also have important implications for many other species in food webs. Higher prevalence of antibodies against rodent‐borne viruses in burned prairies shows an unexpected consequence likely resulting from robust host population densities supported by the increased habitat quality of these sites. Ultimately, these results provide empirical evidence that can inform grassland restoration and ongoing management strategies.

    more » « less
  2. Abstract In Focus

    Becker, D. J., Albery, G. F., Kessler, M. K., Lunn, T. J., Falvo, C. A., Czirják, G. Á., Martin, L. B., & Plowright, R. K. (2020). Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence.Journal of Animal Ecology,89, 972–995. Ecoimmunology seeks to identify and explain natural variation in immune function. Most research so far has focused on differences among individuals within populations, which are often driven by trade‐offs in resource allocation between energetically costly immunity and competing processes such as reproduction. In their review article, Becker et al. (2020) have proposed a framework to explicitly address habitat‐ and population‐level differences in wildlife immune phenotypes. Termed macroimmunology, this concept integrates principles from ecoimmunology and macroecology. Becker et al. (2020) have highlighted three non‐mutually exclusive habitat features that are likely to vary at spatial scales and influence immune function: (a) parasite pressure, (b) abiotic and biotic factors and (c) anthropogenic changes. However, a large and robust body of literature suitable for synthesis to detect macroimmunology patterns and effect sizes is not yet available. Through their systematic review and critical assessment, Becker et al. (2020) identified common problems in existing research that hinders spatial inferences, such as a need for spatial replication in study design and statistical analyses that account for spatial dependence. Overall, macroimmunology has the potential to identify and even predict spatial patterns in immune phenotypes that form the mechanistic underpinnings of important wildlife disease processes, and this review represents an important step to realizing these goals.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. When toxicant-contaminated habitat is scarce on the landscape, costs to movement and survival from toxicant exposure can trap infected animals in contaminated habitat and reduce landscape-level transmission. Increasing the proportion of contaminated habitat causes host population declines from combined effects of toxicants and infection. The onset of host declines precedes an increase in the density of infected hosts in contaminated habitat and thus may serve as an early warning of increasing potential for zoonotic spillover in urbanizing landscapes. These results highlight how sublethal effects of toxicants can determine pathogen impacts on wildlife populations that may not manifest until landscape contamination is widespread. 
    more » « less
  5. null (Ed.)
    Annual migration is common across animal taxa and can dramatically shape the spatial and temporal patterns of infectious disease. Although migration can decrease infection prevalence in some contexts, these energetically costly long-distance movements can also have immunosuppressive effects that may interact with transmission processes in complex ways. Here, we develop a mechanistic model for the reactivation of latent infections driven by physiological changes or energetic costs associated with migration (i.e. ‘migratory relapse’) and its effects on disease dynamics. We determine conditions under which migratory relapse can amplify or reduce infection prevalence across pathogen and host traits (e.g. infectious periods, virulence, overwinter survival, timing of relapse) and transmission phenologies. We show that relapse at either the start or end of migration can dramatically increase prevalence across the annual cycle and may be crucial for maintaining pathogens with low transmissibility and short infectious periods in migratory populations. Conversely, relapse at the start of migration can reduce the prevalence of highly virulent pathogens by amplifying culling of infected hosts during costly migration, especially for highly transmissible pathogens and those transmitted during migration or the breeding season. Our study provides a mechanistic foundation for understanding the spatio-temporal patterns of relapsing infections in migratory hosts, with implications for zoonotic surveillance and understanding how infection patterns will respond to shifts in migratory propensity associated with environmental change. Further, our work suggests incorporating within-host processes into population-level models of pathogen transmission may be crucial for reconciling the range of migration–infection relationships observed across migratory species. 
    more » « less
  6. The number of documented American orthohantaviruses has increased significantly over recent decades, but most fundamental research has remained focused on just two of them: Andes virus (ANDV) and Sin Nombre virus (SNV). The majority of American orthohantaviruses are known to cause disease in humans, and most of these pathogenic strains were not described prior to human cases, indicating the importance of understanding all members of the virus clade. In this review, we summarize information on the ecology of under-studied rodent-borne American orthohantaviruses to form general conclusions and highlight important gaps in knowledge. Information regarding the presence and genetic diversity of many orthohantaviruses throughout the distributional range of their hosts is minimal and would significantly benefit from virus isolations to indicate a reservoir role. Additionally, few studies have investigated the mechanisms underlying transmission routes and factors affecting the environmental persistence of orthohantaviruses, limiting our understanding of factors driving prevalence fluctuations. As landscapes continue to change, host ranges and human exposure to orthohantaviruses likely will as well. Research on the ecology of neglected orthohantaviruses is necessary for understanding both current and future threats to human health. 
    more » « less
  7. Orthohantaviruses are globally emerging zoonotic pathogens. While the reservoir host role of several rodent species is well-established, detailed research on the mechanisms of host-othohantavirus interactions has been constrained by the lack of an experimental system that is able to effectively replicate natural infections in controlled settings. Here we report the isolation, and genetic and phenotypic characterization of a novel Puumala orthohantavirus (PUUV) in cells derived from its reservoir host, the bank vole. The isolation process resulted in cell culture infection that evaded antiviral responses, persisted cell passaging, and had minor viral genome alterations. Critically, experimental infections of bank voles with the new isolate resembled natural infections in terms of viral load and host cell distribution. When compared to an attenuated Vero E6 cell-adapted PUUV Kazan strain, the novel isolate demonstrated delayed virus-specific humoral responses. A lack of virus-specific antibodies was also observed during experimental infections with wild-type PUUV, suggesting that delayed seroconversion could be a general phenomenon during orthohantavirus infection in reservoir hosts. Our results demonstrate that orthohantavirus isolation on cells derived from a vole reservoir host retains wild-type infection properties and should be considered the method of choice for experimental infection models to replicate natural processes. 
    more » « less