skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of habitat management on rodent diversity, abundance, and virus infection dynamics
Abstract As anthropogenic factors continue to degrade natural areas, habitat management is needed to restore and maintain biodiversity. However, the impacts of different habitat management regimes on ecosystems have largely focused on vegetation analyses, with limited evaluation of downstream effects on wildlife. We compared the effects of grassland management regimes (prescribed burning, cutting/haying, or no active management) on rodent communities and the viruses they hosted. Rodents were trapped in 13 existing grassland sites in Northwest Arkansas, USA during 2020 and 2021. Rodent blood samples were screened for antibodies against three common rodent‐borne virus groups: orthohantaviruses, arenaviruses, and orthopoxviruses. We captured 616 rodents across 5953 trap nights. Burned and unmanaged sites had similarly high abundance and diversity, but burned sites had a higher proportion of grassland species than unmanaged sites; cut sites had the highest proportion of grassland species but the lowest rodent abundance and diversity. A total of 38 rodents were seropositive for one of the three virus groups (34 orthohantavirus, three arenavirus, and one orthopoxvirus). Thirty‐six seropositive individuals were found in burned sites, and two orthohantavirus‐seropositive individuals were found in cut sites. Cotton rats and prairie voles, two grassland species, accounted for 97% of the rodents seropositive for orthohantavirus. Our study indicates that prescribed burns lead to a diverse and abundant community of grassland rodent species compared with other management regimes; as keystone taxa, these results also have important implications for many other species in food webs. Higher prevalence of antibodies against rodent‐borne viruses in burned prairies shows an unexpected consequence likely resulting from robust host population densities supported by the increased habitat quality of these sites. Ultimately, these results provide empirical evidence that can inform grassland restoration and ongoing management strategies.  more » « less
Award ID(s):
1911925
PAR ID:
10419226
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
4
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures. 
    more » « less
  2. Abstract In North America, the rodent‐borne hantavirus pulmonary syndrome is predominantly caused by the Sin Nombre virus, typically associated with the deer mousePeromyscus maniculatus. Utilizing data from the National Ecological Observatory Network (NEON) hantavirus program, we assessed factors that may influence the spatial and temporal distribution of hantavirus in rodent populations across the United States. Between 2014 and 2019, the NEON hantavirus program conducted 104,379 small mammal captures and collected 14,004 blood samples from 49 species at 45 field sites. Our study identified 296 seropositive samples across 15 rodent species, including 8Peromyscusspecies. We describe six new species with hantavirus seropositive samples not previously reported as hantavirus hosts. The highest number of seropositive samples was obtained fromPe. maniculatus(n = 116; 2.9% seroprevalence), followed byPeromyscus leucopus(n = 96; 2.8%) andMicrotus pennsylvanicus(n = 33; 4.2%). Hantavirus seroprevalence showed an uneven spatial distribution, with the highest seroprevalence found in Virginia (7.8%, 99 seropositive samples), Colorado (5.7%,n = 37), and Texas (4.8%,n = 19). Hantavirus seropositive samples were obtained from 32 sites, 10 of which presented seropositive samples in species other thanPe. maniculatusorPe. leucopus. Seroprevalence was inconsistent across years but showed intra‐annual bimodal trends, and inPe. maniculatusandPe. leucopus, the number of captures correlated with seroprevalence in the following months. Seroprevalence was higher in adult males, with only one seropositive sample obtained from a juvenilePeromyscus truei. Higher body mass, presence of scrotal testes, and nonpregnant status were associated with higher seropositivity. The NEON dataset, derived from a multiyear and structured surveillance system, revealed the extensive distribution of hantavirus across broad taxonomic and environmental ranges. Future research should consider winter season surveillance and continued analyses of stored samples for a comprehensive spatiotemporal study of hantavirus circulation in wildlife. Global changes are expected to affect the dynamics of rodent populations by affecting their availability of resources and demography and, consequently, may modify transmission rates of rodent‐borne zoonotic pathogens such as hantavirus. This study can be considered a baseline to assess hantavirus patterns across host taxa, geographies, and seasons in the United States. 
    more » « less
  3. Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application. 
    more » « less
  4. Regional long-term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space-for-time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, which cover ~45% of Earth’s land surface and face increasingly drier and more variable climates. Here, we analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland habitats in the southwestern USA. We captured two time series: 1995-2006 and 2004-2013 that coincide with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20-35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004-2013, with losses of ~5% of animals captured. During the first time series (PDO wet phase), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (dry phase), climate best explained rodent abundance for 60% of taxa. Temporal dynamics in rodent diversity and abundance differed spatially among habitats and sites, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Both habitat type and phase of the PDO modulated which species were winners or losers under increasing drought and amplified interannual variability in drought. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among habitats for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995 - 2013. Whether these changes portend future declines in drought-sensitive consumers in the southwestern USA will depend on the climate during the next major phase of the PDO. 
    more » « less
  5. Rodents are the largest and most diverse group of mammals. Covering a wide range of structural and functional adaptations, rodents successfully occupy virtually every terrestrial habitat, and they are often found in close association with humans, domestic animals, and wildlife. Although a significant amount of research has focused on rodents’ prominence as known reservoirs of zoonotic viruses, there has been less emphasis on the viral ecology of rodents in general. Here, we utilized a viral metagenomics approach to investigate polyomaviruses in wild rodents from the Baja California peninsula, Mexico, using fecal samples. We identified a novel polyomavirus in fecal samples from two rodent species, a spiny pocket mouse (Chaetodipus spinatus) and a Dulzura kangaroo rat (Dipodomys simulans). These two polyomaviruses represent a new species in the genus Betapolyomavirus. Sequences of this polyomavirus cluster phylogenetically with those of other rodent polyomaviruses and two other non-rodent polyomaviruses (WU and KI) that have been identified in the human respiratory tract. Through our continued work on seven species of rodents, we endeavor to explore the viral diversity associated with wild rodents on the Baja California peninsula and expand on current knowledge of rodent viral ecology and evolution. 
    more » « less