skip to main content


Title: Effects of habitat management on rodent diversity, abundance, and virus infection dynamics
Abstract

As anthropogenic factors continue to degrade natural areas, habitat management is needed to restore and maintain biodiversity. However, the impacts of different habitat management regimes on ecosystems have largely focused on vegetation analyses, with limited evaluation of downstream effects on wildlife. We compared the effects of grassland management regimes (prescribed burning, cutting/haying, or no active management) on rodent communities and the viruses they hosted. Rodents were trapped in 13 existing grassland sites in Northwest Arkansas, USA during 2020 and 2021. Rodent blood samples were screened for antibodies against three common rodent‐borne virus groups: orthohantaviruses, arenaviruses, and orthopoxviruses. We captured 616 rodents across 5953 trap nights. Burned and unmanaged sites had similarly high abundance and diversity, but burned sites had a higher proportion of grassland species than unmanaged sites; cut sites had the highest proportion of grassland species but the lowest rodent abundance and diversity. A total of 38 rodents were seropositive for one of the three virus groups (34 orthohantavirus, three arenavirus, and one orthopoxvirus). Thirty‐six seropositive individuals were found in burned sites, and two orthohantavirus‐seropositive individuals were found in cut sites. Cotton rats and prairie voles, two grassland species, accounted for 97% of the rodents seropositive for orthohantavirus. Our study indicates that prescribed burns lead to a diverse and abundant community of grassland rodent species compared with other management regimes; as keystone taxa, these results also have important implications for many other species in food webs. Higher prevalence of antibodies against rodent‐borne viruses in burned prairies shows an unexpected consequence likely resulting from robust host population densities supported by the increased habitat quality of these sites. Ultimately, these results provide empirical evidence that can inform grassland restoration and ongoing management strategies.

 
more » « less
Award ID(s):
1911925
NSF-PAR ID:
10419226
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
4
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Regional long-term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space-for-time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, which cover ~45% of Earth’s land surface and face increasingly drier and more variable climates. Here, we analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland habitats in the southwestern USA. We captured two time series: 1995-2006 and 2004-2013 that coincide with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20-35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004-2013, with losses of ~5% of animals captured. During the first time series (PDO wet phase), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (dry phase), climate best explained rodent abundance for 60% of taxa. Temporal dynamics in rodent diversity and abundance differed spatially among habitats and sites, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Both habitat type and phase of the PDO modulated which species were winners or losers under increasing drought and amplified interannual variability in drought. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among habitats for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995 - 2013. Whether these changes portend future declines in drought-sensitive consumers in the southwestern USA will depend on the climate during the next major phase of the PDO. 
    more » « less
  2. The 100,000 ha Sevilleta National Wildlife Refuge (SNWR) in central New Mexico lies in a transition zone that straddles several major biomes of the Southwest, including Great Basin Shrub-Steppe, Mogollon Pinon-Juniper Woodland, Great Plains Grassland and Chihuahuan Desert. During 9 years, (1990-1998), collaborating with the University of New Mexico's Long Term Ecological Research (LTER) program, 3,235 rodents (28 species in 4 families) were collected and identified from permanent collecting sites on the 3 major habitat types (grassland, desert/creosote, woodland) on the SNWR. Hosts were necropsied for endoparasites (protozoa [coccidia], helminths) and some ectoparasites. We identified and analyzed all the parasites found in these hosts. By 1998, we had in place the means to easily identify and moniter the parasites from all mammalian hosts caught on the LTER Phase II grant.This is not just another parasite survey; the data we collected was unique for several reasons: 1) This was the first complete inventory of a natural assemblage of parasites from all mammalian (rodent) hosts in 3 different communities, each from a distinctly defined geographic locality (habitat type) over the period of a decade, and beyond; 2) This study was part of a multidisciplinary approach to address conceptual issues of climate change on ecosystem structure and function at multiple scales (individuals, communities, etc) and correlative data from these related studies will strengthen and contribute to the robustness of this data set; 3) As the only parasite study on any of the LTER projects nationwide, it provided an ideal model, and perhaps incentive for parallel longterm studies of parasite communities to be examined in a variety of other habitat types, and from a variety of different perspectives, and other LTER sites in the network.Upon completing the work, we were able to use these long-term data to try to understand the dynamics of natural host-parasite assemblages. Hypotheses were then erected to test/address at least these questions: How do the different parasite communities colonize, mature, climax and senesce over time (or do they?), Do they vary in response to abiotic (climate change) and/or biotic (dispersal, colonization) factors? What temporal and spatial scales, and among what kinds of organisms, do coevolutionary processes influence the community organization of these parasites? Studies of the dynamics of multiple, coexisting species are confined primarily to microtine rodents and have hinted that multiannual cycles tend to be synchronous (Brown and Heske 1990). Are similar patterns seen for the parasites of our desert rodents? Answers to these questions relating to community structure, as well as to questions concerning parasite biodiversity on the SNWR, can be answered paritially or completely by the information we gathered on the parasite species infecting rodents collected on the SNWR. Initial emphasis of our work was on identifying all the parasites collected, by processing 8 consecutive years of parasite data, and on training the undergraduate and graduate students involved in the art of taxonomy and nomenclature of parasitic protozoans and helminths,  to supply some of these answers. 
    more » « less
  3. Abstract

    Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.

     
    more » « less
  4. Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co- infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dy- namics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and hel- minths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro- parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associ- ated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co- infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance. 
    more » « less
  5. Abstract

    During the “decade on restoration,” we must understand how to reliably re‐establish native plant populations. When establishing populations through seed addition, practitioners often prioritize obtaining seed from locations geographically near the restoration site (i.e. “local seed sourcing”). They are assumed to be under similar environmental conditions to the restoration site and should establish more robust plant populations and preserve local biotic interactions better than seeds sourced from further away. However, this assumption remains virtually untested in realistic restoration settings and the importance of seed sourcing, relative to other factors such as seeding rate and management regimes, is unclear.

    To determine if seed sourcing decision impacts plant establishment, abundance and phenology, we developed a partnership between university‐researchers and a native seed producer that kept records on where their seed was sourced from and where it was planted. At each site, we recorded the abundance and phenological stage of five commonly used tallgrass prairie restoration species seeded at 24 sites undergoing restoration across Michigan. We considered two measures of seed source locality: geographic distance (seeds were sourced from locations 6–750 km away from their respective restoration sites) and environmental distance. We also obtained data on the seeding rate and post‐seeding management at each site.

    We found that no measure of seed source locality predicted the likelihood of plant establishment or abundance at restoration sites. However, sites sown with seed from further away, or from cooler and wetter climates, had a greater proportion of flowering individuals earlier in the season. Finally, sites with higher seeding rates had greater plant abundance, and post‐seeding management of the restoration site increased the likelihood a species would establish by 36%.

    Overall, these results support that seed sourcing decisions did not impact plant establishment or abundance in our system. However, using less‐local seed sources may alter flowering phenology.

    Our results suggest that tallgrass prairie restoration efforts should prioritize higher seeding rates, post‐seeding management, and might expand the region seed sources are considered “local”, though this may impact flowering phenology. Future research leveraging native seed producer records can help answer critical questions about restoration seed sourcing.

     
    more » « less