Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The objective of this paper is to develop efficient numerical algorithms for the linear advection-diffusion equation in fractured porous media. A reduced fracture model is considered where the fractures are treated as interfaces between subdomains and the interactions between the fractures and the surrounding porous medium are taken into account. The model is discretized by a backward Euler upwind-mixed hybrid finite element method in which the flux variable represents both the advective and diffusive fluxes. The existence, uniqueness, as well as optimal error estimates in both space and time for the fully discrete coupled problem are established. Moreover, to facilitate different time steps in the fracture-interface and the subdomains, global-in-time, nonoverlapping domain decomposition is utilized to derive two implicit iterative solvers for the discrete problem. The first method is based on the time-dependent Steklov–Poincaré operator, while the second one employs the optimized Schwarz waveform relaxation (OSWR) approach with Ventcel-Robin transmission conditions. A discrete space-time interface system is formulated for each method and is solved iteratively with possibly variable time step sizes. The convergence of the OSWR-based method with conforming time grids is also proved. Finally, numerical results in two dimensions are presented to verify the optimal order of convergence of the monolithic solver and to illustrate the performance of the two decoupled schemes with local time-stepping on problems of high Péclet numbers.more » « less
-
This paper is concerned with the numerical solution of compressible fluid flow in a fractured porous medium. The fracture represents a fast pathway (i.e., with high permeability) and is modeled as a hypersurface embedded in the porous medium. We aim to develop fast-convergent and accurate global-in-time domain decomposition (DD) methods for such a reduced fracture model, in which smaller time step sizes in the fracture can be coupled with larger time step sizes in the subdomains. Using the pressure continuity equation and the tangential PDEs in the fracture-interface as transmission conditions, three different DD formulations are derived; each method leads to a space-time interface problem which is solved iteratively and globally in time. Efficient preconditioners are designed to accelerate the convergence of the iterative methods while preserving the accuracy in time with nonconforming grids. Numerical results for two-dimensional problems with non-immersed and partially immersed fractures are presented to show the improved performance of the proposed methods.more » « less
-
Nonconforming time discretization based on Robin transmission conditions for the Stokes–Darcy systemWe consider a space-time domain decomposition method based on Schwarz waveform relaxation (SWR) for the time-dependent Stokes-Darcy system. The coupled system is formulated as a time-dependent interface problem based on Robin-Robin transmission conditions, for which the decoupling SWR algorithm is proposed and proved for the convergence. In this approach, the Stokes and Darcy problems are solved independently and globally in time, thus allowing the use of different time steps for the local problems. Numerical tests are presented for both non-physical and physical problems with various mesh sizes and time step sizes to illustrate the accuracy and efficiency of the proposed method.more » « less
-
This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Peclét numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions.more » « less
An official website of the United States government
