skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonconforming time discretization based on Robin transmission conditions for the Stokes–Darcy system
We consider a space-time domain decomposition method based on Schwarz waveform relaxation (SWR) for the time-dependent Stokes-Darcy system. The coupled system is formulated as a time-dependent interface problem based on Robin-Robin transmission conditions, for which the decoupling SWR algorithm is proposed and proved for the convergence. In this approach, the Stokes and Darcy problems are solved independently and globally in time, thus allowing the use of different time steps for the local problems. Numerical tests are presented for both non-physical and physical problems with various mesh sizes and time step sizes to illustrate the accuracy and efficiency of the proposed method.  more » « less
Award ID(s):
1912626
PAR ID:
10337838
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied mathematics and computation
Volume:
413
ISSN:
0096-3003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  2. We consider the interaction between a free flowing fluid and a porous medium flow, where the free flowing fluid is described using the time dependent Stokes equations, and the porous medium flow is described using Darcy’s law in the primal formulation. To solve this problem numerically, we use a diffuse interface approach, where the weak form of the coupled problem is written on an extended domain which contains both Stokes and Darcy regions. This is achieved using a phase-field function which equals one in the Stokes region and zero in the Darcy region, and smoothly transitions between these two values on a diffuse region of width (ϵ) around the Stokes-Darcy interface. We prove convergence of the diffuse interface formulation to the standard, sharp interface formulation, and derive rates of convergence. This is performed by deriving a priori error estimates for discretizations of the diffuse interface method, and by analyzing the modeling error of the diffuse interface approach at the continuous level. The convergence rates are also shown computationally in a numerical example. 
    more » « less
  3. Summary We propose and analyze an efficient ensemble algorithm with artificial compressibility (AC) for fast decoupled computation of multiple realizations of the stochastic Stokes‐Darcy model with random hydraulic conductivity (including the one in the interface conditions), source terms, and initial conditions. The solutions are found by solving three smaller decoupled subproblems with two common time‐independent coefficient matrices for all realizations, which significantly improves the efficiency for both assembling and solving the matrix systems. The fully coupled Stokes‐Darcy system can be first decoupled into two smaller subphysics problems by the idea of the partitioned time stepping, which reduces the size of the linear systems and allows parallel computing for each subphysics problem. The AC further decouples the velocity and pressure which further reduces storage requirements and improves computational efficiency. We prove the long time stability and the convergence for this new ensemble method. Three numerical examples are presented to support the theoretical results and illustrate the features of the algorithm, including the convergence, stability, efficiency, and applicability. 
    more » « less
  4. This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Peclét numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions. 
    more » « less
  5. We present a strongly conservative and pressure-robust hybridizable discontinuous Galerkin method for the coupled time-dependent Navier–Stokes and Darcy problem. We show existence and uniqueness of a solution and present an optimala priorierror analysis for the fully discrete problem when using Backward Euler time stepping. The theoretical results are verified by numerical examples. 
    more » « less