skip to main content


Search for: All records

Award ID contains: 1913328

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recent muong− 2 result from Fermilab combined with the Brookhaven result, strongly points to new physics beyond the Standard Model which can be well described by the electroweak sector of supersymmetry if the masses of the sleptons and some of the electroweak gauginos are in the few hundred GeV range. However, the Higgs boson mass measurement at 125 GeV indicates a mass scale for squarks which lies in the few TeV region indicating a split mass spectrum between squarks and sleptons. This apparent puzzle is resolved in a natural way in gluino-driven radiative breaking of the electroweak symmetry where radiative breaking is driven by a large gluino mass and the gluino color interactions lead to a large splitting between the squarks and the sleptons. We show that an analysis without prejudice using an artificial neural network also leads to the gluino-driven radiative breaking. We use a set of benchmarks and a deep neural network analysis to test the model for the discovery of light sleptons and sneutrinos at HL-LHC and HE-LHC.

     
    more » « less
  2. A bstract We discuss supersymmetric Yang-Mills theory coupled to dilatons in the framework of celestial holography. We show that in the presence of point-like dilaton sources, the CCFT operators associated with the gauge supermultiplet acquire a simple, factorized form. They factorize into the holomorphic (super)current part and the exponential “light” operators of Liouville theory, in the infinite central charge limit. The current sector exhibits (1,0) supersymmetry, thus implementing spacetime supersymmetry in CCFT. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT. 
    more » « less
  4. Abstract The recent analysis from the SH0ES collaboration has confirmed the existence of a Hubble tension between measurements at high redshift ( z > 1000) and at low redshift ( z < 1) at the 5 σ level with the low redshift measurement giving a higher value. In this work we propose a particle physics model that can help alleviate the Hubble tension via an out-of-equilibrium hidden sector coupled to the visible sector. The particles that populate the dark sector consist of a dark fermion, which acts as dark matter, a dark photon, a massive scalar and a massless pseudo-scalar. Assuming no initial population of particles in the dark sector, feeble couplings between the visible and the hidden sectors via kinetic mixing populate the dark sector even though the number densities of hidden sector particles never reach their equilibrium distribution and the two sectors remain at different temperatures. A cosmologically consistent analysis is presented where a correlated evolution of the visible and the hidden sectors with coupled Boltzmann equations involving two temperatures, one for the visible sector and the other for the hidden sector, is carried out. The relic density of the dark matter constituted of dark fermions is computed in this two-temperature formalism. As a consequence, BBN predictions are upheld with a minimal contribution to Δ N eff . However, the out-of-equilibrium decay of the massive scalar to the massless pseudo-scalar close to the recombination time causes an increase in Δ N eff that can help weaken the Hubble tension. 
    more » « less
  5. A bstract We establish an orientifold Calabi-Yau threefold database for h 1 , 1 ( X ) ≤ 6 by considering non-trivial ℤ 2 divisor exchange involutions, using a toric Calabi-Yau database ( www.rossealtman.com/tcy ). We first determine the topology for each individual divisor (Hodge diamond), then identify and classify the proper involutions which are globally consistent across all disjoint phases of the Kähler cone for each unique geometry. Each of the proper involutions will result in an orientifold Calabi-Yau manifold. Then we clarify all possible fixed loci under the proper involution, thereby determining the locations of different types of O -planes. It is shown that under the proper involutions, one typically ends up with a system of O 3 /O 7-planes, and most of these will further admit naive Type IIB string vacua. The geometries with freely acting involutions are also determined. We further determine the splitting of the Hodge numbers into odd/even parity in the orbifold limit. The final result is a class of orientifold Calabi-Yau threefolds with non-trivial odd class cohomology ( $$ {h}_{-}^{1,1} $$ h − 1 , 1 ( X/σ * ) ≠ 0). 
    more » « less
  6. A bstract Analysis of EDGES data shows an absorption signal of the redshifted 21-cm line of atomic hydrogen at z ∼ 17 which is stronger than expected from the standard ΛCDM model. The absorption signal interpreted as brightness temperature T 21 of the 21-cm line gives an amplitude of $$ -{500}_{-500}^{+200} $$ − 500 − 500 + 200 mK at 99% C.L. which is a 3.8 σ deviation from what the standard ΛCDM cosmology gives. We present a particle physics model for the baryon cooling where a fraction of the dark matter resides in the hidden sector with a U(1) gauge symmetry and a Stueckelberg mechanism operates mixing the visible and the hidden sectors with the hidden sector consisting of dark Dirac fermions and dark photons. The Stueckelberg mass mixing mechanism automatically generates a millicharge for the hidden sector dark fermions providing a theoretical basis for using millicharged dark matter to produce the desired cooling of baryons seen by EDGES by scattering from millicharged dark matter. We compute the relic density of the millicharged dark matter by solving a set of coupled equations for the dark fermion and dark photon yields and for the temperature ratio of the hidden sector and the visible sector heat baths. For the analysis of baryon cooling, we analyze the evolution equations for the temperatures of baryons and millicharged dark matter as a function of the redshift. We exhibit regions of the parameter space which allow consistency with the EDGES data. We note that the Stueckelberg mechanism arises naturally in strings and the existence of a millicharge would point to its string origin. 
    more » « less
  7. A bstract In a recent paper, here referred to as part I, we considered the celestial four-gluon amplitude with one gluon represented by the shadow transform of the corresponding primary field operator. This correlator is ill-defined because it contains branch points related to the presence of conformal blocks with complex spin. In this work, we adopt a procedure similar to minimal models and construct a single-valued completion of the shadow correlator, in the limit when the shadow is “soft.” By following the approach of Dotsenko and Fateev, we obtain an integral representation of such a single-valued correlator. This allows inverting the shadow transform and constructing a single-valued celestial four-gluon amplitude. This amplitude is drastically different from the original Mellin amplitude. It is defined over the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties. It agrees with all known OPEs of celestial gluon operators. The conformal block spectrum consists of primary fields with dimensions ∆ = m + iλ , with integer m ≥ 1 and various, but always integer spin, in all group representations contained in the product of two adjoint representations. 
    more » « less