- Award ID(s):
- 1913328
- PAR ID:
- 10353339
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We initiate the geometric engineering of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories on D1-branes probing singularities. To do so, we introduce a new class of backgrounds obtained as quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) orientifolds . Spin(7) orientifolds explicitly realize the perspective on 2d $$ \mathcal{N} $$ N = (0 , 1) theories as real slices of $$ \mathcal{N} $$ N = (0 , 2) ones. Remarkably, this projection is geometrically realized as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-holomorphic involutions. We illustrate this construction in numerous examples with both orbifold and non-orbifold parent singularities, discuss the role of the choice of vector structure in the orientifold quotient, and study partial resolutions.more » « less
-
A bstract We study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_D $$ O D applies when D is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_{\overline{D}} $$ O D ¯ of the normalization $$ \overline{D} $$ D ¯ of D . We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $$ {h}_{+}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(1,0,0\right) $$ h + • O D ¯ = 1 0 0 and $$ {h}_{-}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(0,0,0\right) $$ h − • O D ¯ = 0 0 0 give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.more » « less
-
A bstract Moduli stabilisation in string compactifications with many light scalars remains a major blind-spot in the string landscape. In these regimes, analytic methods cease to work for generic choices of UV parameters which is why numerical techniques have to be exploited. In this paper, we implement algorithms based on JAX, heavily utilising automatic differentiation, just-in-time compilation and parallelisation features, to efficiently construct string vacua. This implementation provides a golden opportunity to efficiently analyse large unexplored regions of the string landscape. As a first example, we apply our techniques to the search of Type IIB flux vacua in Calabi-Yau orientifold compactifications. We argue that our methods only scale mildly with the Hodge numbers making exhaustive studies of low energy effective field theories with
(100) scalar fields feasible. Using small computing resources, we are able to construct$$ \mathcal{O} $$ (106) flux vacua per geometry with$$ \mathcal{O} $$ h 1, 2≥ 2, vastly out-performing previous systematic searches. In particular, we showcase the efficiency of our methods by presenting generic vacua with fluxes below the tadpole constraint set by the orientifold with up toh 1, 2= 25 complex structure moduli. -
null (Ed.)We study the existence of special Lagrangian submanifolds of log Calabi–Yau manifolds equipped with the complete Ricci-flat Kähler metric constructed by Tian and Yau. We prove that if X is a Tian–Yau manifold and if the compact Calabi–Yau manifold at infinity admits a single special Lagrangian, then X admits infinitely many disjoint special Lagrangians. In complex dimension 2, we prove that if Y is a del Pezzo surface or a rational elliptic surface and D is a smooth divisor in the linear system of K_Y with D^2=d, then X=Y/D admits a special Lagrangian torus fibration, as conjectured by Strominger–Yau–Zaslow and Auroux. In fact, we show that X admits twin special Lagrangian fibrations, confirming a prediction of Leung and Yau. In the special case that Y is a rational elliptic surface or Y=P^2, we identify the singular fibers for generic data, thereby confirming two conjectures of Auroux. Finally, we prove that after a hyper-Kähler rotation, X can be compactified to the complement of a Kodaira type I_d fiber appearing as a singular fiber in a rational elliptic surface.more » « less
-
We formulate a version of the integral Hodge conjecture for categories, prove the conjecture for two-dimensional Calabi–Yau categories which are suitably deformation equivalent to the derived category of a K3 or abelian surface, and use this to deduce cases of the usual integral Hodge conjecture for varieties. Along the way, we prove a version of the variational integral Hodge conjecture for families of two-dimensional Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces of objects in such families. Our machinery also has applications to the structure of intermediate Jacobians, such as a criterion in terms of derived categories for when they split as a sum of Jacobians of curves.more » « less