skip to main content

Search for: All records

Award ID contains: 1913729

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The chiral magnetic effect (CME) is a novel transport phenomenon, arising from the interplay between quantum anomalies and strong magnetic fields in chiral systems. In high-energy nuclear collisions, the CME may survive the expansion of the quark-gluon plasma fireball and be detected in experiments. Over the past two decades, experimental searches for the CME have attracted extensive interest at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The main goal of this study is to investigate three pertinent experimental approaches: the correlator, the R correlator, and the signed balance functions. We exploit simple Monte Carlo simulations and a realistic event generator (EBE-AVFD) to verify the equivalence of the core components among these methods and to ascertain their sensitivities to the CME signal and the background contributions for the isobar collisions at the RHIC.
    Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023