skip to main content


Search for: All records

Award ID contains: 1914503

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The occurrence of plate tectonic processes on Earth during the Paleoproterozoic is supported by ca. 2.2–1.8 Ga subduction‐collision orogens associated with the assembly of the Columbia‐Nuna supercontinent. Subsequent supercontinent breakup is evidence by global ca. 1.8–1.6 Ga large igneous provinces. The North China craton is notable for containing Paleoproterozoic orogens along its margins, herein named the Northern Margin orogen, yet the nature and timing of orogenic and extensional processes of these orogens and their role in the supercontinent cycle remain unclear. In this contribution, we present new field observations, U‐Pb zircon and baddeleyite geochronology dates, and major/trace‐element and isotope geochemical analyses from the northern margin of the North China craton that detail its Paleoproterozoic tectonic and magmatic history. Specifically, we record the occurrence of ca. 2.2–2.0 Ga magmatic arc rocks, ca. 1.9–1.88 Ga tectonic mélange and mylonitic shear zones, and folded lower Paleoproterozoic strata. These rocks were affected by ca. 1.9–1.8 Ga granulite‐facies metamorphism and ca. 1.87–1.78 Ga post‐collisional, extension‐related magmatism along the cratonal northern margin. We interpret that the generation and emplacement of these rocks, and the coupled metamorphic and magmatic processes, were related to oceanic subduction and subsequent continent‐continent collision during the Paleoproterozoic. The occurrence of ca. 1.77–1.73 Ga mafic dykes and ca. 1.75 Ga mylonitic shear zones along the northern margin of the North China craton may have been related to a regional mantle plume event. Our results are consistent with modern style plate tectonics, including oceanic subduction‐related plate convergence and continent‐continent collision, operating in the Paleoproterozoic.

     
    more » « less
  2. Abstract High-pressure metamorphic rocks occur as distinct belts along subduction zones and collisional orogens or as isolated blocks within orogens or mélanges and represent continental materials that were subducted to deep depths and subsequently exhumed to the shallow crust. Understanding the burial and exhumation processes and the sizes and shapes of the high-pressure blocks is important for providing insight into global geodynamics and plate tectonic processes. The South Beishan orogen of northwestern China is notable for the exposure of early Paleozoic high-pressure (HP), eclogite-facies metamorphic rocks, yet the tectonism associated with the HP metamorphism and mechanism of exhumation are poorly understood despite being key to understanding the tectonic evolution of the larger Central Asian Orogenic System. To address this issue, we examined the geometries, kinematics, and overprinting relationships of structures and determined the temperatures and timings of deformation and metamorphism of the HP rocks of the South Beishan orogen. Geochronological results show that the South Beishan orogen contains ca. 1.55–1.35 Ga basement metamorphic rocks and ca. 970–866 Ma granitoids generated during a regional tectono-magmatic event. Ca. 500–450 Ma crustal thickening and HP metamorphism may have been related to regional contraction in the South Beishan orogen. Ca. 900–800 Ma protoliths experienced eclogite-facies metamorphism (~1.2–2.1 GPa and ~700–800 °C) in thickened lower crust. These HP rocks were subsequently exhumed after ca. 450 Ma to mid-crustal depths in the footwall of a regional detachment fault during southeast-northwest–oriented crustal extension, possibly as the result of rollback of a subducted oceanic slab. Prior to ca. 438 Ma, north-south–oriented contraction resulted in isoclinal folding of the detachment fault and HP rocks. Following this contractional phase in the middle Mesozoic, the South Beishan orogen experienced thrusting interpreted to be the response to the closure of the Tethyan and Paleo-Asian Ocean domains. This contractional phase was followed by late Mesozoic extension and subsequent surface erosion that controlled exhumation of the HP rocks. 
    more » « less
  3. Crustal thickening has been a key process of collision-induced Cenozoic deformation along the Indus-Yarlung suture zone, yet the timing, geometric relationships, and along-strike continuities of major thrusts, such as the Great Counter thrust and Gangdese thrust, remain inadequately understood. In this study, we present findings of geologic mapping and thermo- and geochronologic, geochemical, microstructural, and geothermobarometric analyses from the easternmost Indus-Yarlung suture zone exposed in the northern Indo-Burma Ranges. Specifically, we investigate the Lohit and Tidding thrust shear zones and their respective hanging wall rocks of the Lohit Plutonic Complex and Tidding and Mayodia mélange complexes. Field observations are consistent with ductile deformation concentrated along the top-to-the-south Tidding thrust shear zone, which is in contrast to the top-to-the-north Great Counter thrust at the same structural position to the west. Upper amphibolite-facies metamorphism of mélange rocks at ∼9−10 kbar (∼34−39 km) occurred prior to ca. 36−30 Ma exhumation during slip along the Tidding thrust shear zone. To the north, the ∼5-km-wide Lohit thrust shear zone has a subvertical geometry and north-side-up kinematics. Cretaceous arc granitoids of the Lohit Plutonic Complex were emplaced at ∼32−40 km depth in crust estimated to be ∼38−52 km thick at that time. These rocks cooled from ca. 25 Ma to 10 Ma due to slip along the Lohit thrust shear zone. We demonstrate that the Lohit thrust shear zone, Gangdese thrust, and Yarlung-Tsangpo Canyon thrust have comparable hanging wall and footwall rocks, structural geometries, kinematics, and timing. Based on these similarities, we interpret that these thrusts formed segments of a laterally continuous thrust system, which served as the preeminent crustal thickening structure along the Neotethys-southern Lhasa terrane margin and exhumed Gangdese lower arc crust in Oligocene−Miocene time. 
    more » « less
  4. The Beishan orogen is part of the Neoproterozoic to early Mesozoic Central Asian Orogenic System in central Asia that exposes ophiolitic complexes, passive-margin strata, arc assemblages, and Precambrian basement rocks. To better constrain the tectonic evolution of the Beishan orogen, we conducted field mapping, U-Pb zircon dating, whole-rock geochemical analysis, and Sr-Nd isotopic analysis. The new results, when interpreted in the context of the known geological setting, show that the Beishan region had experienced five phases of arc magmatism at ca. 1450−1395 Ma, ca. 1071−867 Ma, ca. 542−395 Ma, ca. 468−212 Ma, and ca. 307−212 Ma. In order to explain the geological, geochemical, and geochronological data from the Beishan region, we present a tectonic model that involves the following five phases of deformation: (1) Proterozoic rifting that separated the North Beishan block from the Greater North China craton that led to the opening of the Beishan Ocean, (2) early Paleozoic north-dipping subduction (ca. 530−430 Ma) of the Beishan oceanic plate associated with back-arc extension followed by collision between the North and South Beishan microcontinental blocks, (3) northward slab rollback of the south-dipping subducting Paleo-Asian oceanic plate at ca. 450−440 Ma along the northern margin of the North Beishan block that led to the formation of a northward-younging extensional continental arc (ca. 470−280 Ma) associated with bimodal igneous activity, which indicates that the westward extension of the Solonker suture is located north of the Hongshishan-Pengboshan tectonic zone, (4) Late Carboniferous opening and Permian north-dipping subduction of the Liuyuan Ocean in the southern Beishan orogen, and (5) Mesozoic-Cenozoic intracontinental deformation induced by the final closure of the Paleo-Asian Ocean system in the north and the Tethyan Ocean system in the south. 
    more » « less
  5. The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture. 
    more » « less
  6. null (Ed.)
    Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a −1 , which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent. Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MN Thematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts 
    more » « less
  7. null (Ed.)
    The growth history and formation mechanisms of the Cenozoic Tibetan Plateau are the subject of an intense debate with important implications for understanding the kinematics and dynamics of large-scale intracontinental deformation. Better constraints on the uplift and deformation history across the northern plateau are necessary to address how the Tibetan Plateau was constructed. To this end, we present updated field observations coupled with low-temperature thermochronology from the Qaidam basin in the south to the Qilian Shan foreland in the north. Our results show that the region experienced a late Mesozoic cooling event that is interpreted as a result of tectonic deformation prior to the India-Asia collision. Our results also reveal the onset of renewed cooling in the Eocene in the Qilian Shan region along the northern margin of the Tibetan Plateau, which we interpret to indicate the timing of initial thrusting and plateau formation along the plateau margin. The interpreted Eocene thrusting in the Qilian Shan predates Cenozoic thrust belts to the south (e.g., the Eastern Kunlun Range), which supports out-of-sequence rather than northward-migrating thrust belt development. The early Cenozoic deformation exploited the south-dipping early Paleozoic Qilian suture zone as indicated by our field mapping and the existing geophysical data. In the Miocene, strike-slip faulting was initiated along segments of the older Paleozoic suture zones in northern Tibet, which led to the development of the Kunlun and Haiyuan left-slip transpressional systems. Late Miocene deformation and uplift of the Hexi corridor and Longshou Shan directly north of the Qilian Shan thrust belt represent the most recent phase of outward plateau growth. 
    more » « less