skip to main content


Title: Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan and Eastern Kunlun Range, northern Tibet
The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.  more » « less
Award ID(s):
1914501 1914503
NSF-PAR ID:
10315894
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Beishan orogen is part of the Neoproterozoic to early Mesozoic Central Asian Orogenic System in central Asia that exposes ophiolitic complexes, passive-margin strata, arc assemblages, and Precambrian basement rocks. To better constrain the tectonic evolution of the Beishan orogen, we conducted field mapping, U-Pb zircon dating, whole-rock geochemical analysis, and Sr-Nd isotopic analysis. The new results, when interpreted in the context of the known geological setting, show that the Beishan region had experienced five phases of arc magmatism at ca. 1450−1395 Ma, ca. 1071−867 Ma, ca. 542−395 Ma, ca. 468−212 Ma, and ca. 307−212 Ma. In order to explain the geological, geochemical, and geochronological data from the Beishan region, we present a tectonic model that involves the following five phases of deformation: (1) Proterozoic rifting that separated the North Beishan block from the Greater North China craton that led to the opening of the Beishan Ocean, (2) early Paleozoic north-dipping subduction (ca. 530−430 Ma) of the Beishan oceanic plate associated with back-arc extension followed by collision between the North and South Beishan microcontinental blocks, (3) northward slab rollback of the south-dipping subducting Paleo-Asian oceanic plate at ca. 450−440 Ma along the northern margin of the North Beishan block that led to the formation of a northward-younging extensional continental arc (ca. 470−280 Ma) associated with bimodal igneous activity, which indicates that the westward extension of the Solonker suture is located north of the Hongshishan-Pengboshan tectonic zone, (4) Late Carboniferous opening and Permian north-dipping subduction of the Liuyuan Ocean in the southern Beishan orogen, and (5) Mesozoic-Cenozoic intracontinental deformation induced by the final closure of the Paleo-Asian Ocean system in the north and the Tethyan Ocean system in the south. 
    more » « less
  2. null (Ed.)
    The growth history and formation mechanisms of the Cenozoic Tibetan Plateau are the subject of an intense debate with important implications for understanding the kinematics and dynamics of large-scale intracontinental deformation. Better constraints on the uplift and deformation history across the northern plateau are necessary to address how the Tibetan Plateau was constructed. To this end, we present updated field observations coupled with low-temperature thermochronology from the Qaidam basin in the south to the Qilian Shan foreland in the north. Our results show that the region experienced a late Mesozoic cooling event that is interpreted as a result of tectonic deformation prior to the India-Asia collision. Our results also reveal the onset of renewed cooling in the Eocene in the Qilian Shan region along the northern margin of the Tibetan Plateau, which we interpret to indicate the timing of initial thrusting and plateau formation along the plateau margin. The interpreted Eocene thrusting in the Qilian Shan predates Cenozoic thrust belts to the south (e.g., the Eastern Kunlun Range), which supports out-of-sequence rather than northward-migrating thrust belt development. The early Cenozoic deformation exploited the south-dipping early Paleozoic Qilian suture zone as indicated by our field mapping and the existing geophysical data. In the Miocene, strike-slip faulting was initiated along segments of the older Paleozoic suture zones in northern Tibet, which led to the development of the Kunlun and Haiyuan left-slip transpressional systems. Late Miocene deformation and uplift of the Hexi corridor and Longshou Shan directly north of the Qilian Shan thrust belt represent the most recent phase of outward plateau growth. 
    more » « less
  3. The present topography of the northern Tibetan Plateau is characterized by the northwest-trending Eastern Kunlun Range, Qaidam Basin, and Qilian Shan, which figure importantly into the evolution and mechanism of Tibetan plateau development during Cenozoic Indo-Asian convergence. Understanding the Cenozoic deformation history and the source-to-sink relationship through time has significant implications for deciphering the growth history of the northern Tibetan Plateau. Despite decades of study, the timing, pattern, and mechanisms of deformation across the northern Tibetan Plateau are still vigorously debated. The North Qaidam thrust belt, located between the Qaidam Basin and Qilian Shan thrust belt, provides a valuable record of Cenozoic deformation in the northern Tibetan Plateau. Here, we present the results of new geologic mapping, structural and sedimentology analysis, and apatite fission track thermochronology to constrain the Cenozoic evolution history and reconstruct the paleogeomorphology of the eastern domain of the North Qaidam thrust belt and its foreland, the Wulan Basin. Our analyses reveal the North Qaidam thrust belt experienced multi-phase exhumation since the Cretaceous. A period of Eocene localized thrust-related uplift of the North Qaidam thrust belt initiated shortly after India-Asia collision, and lower erosion rates in the Oligocene allowed the thrust belt to expand along-strike eastward. Local uplift shed sediments to the southwest, directly into the Qaidam Basin. Reactivation of the proximal thrust faults and initiation of the northwest-striking right-slip Elashan fault at ca. 15−10 Ma drove the final accelerated mid-Miocene cooling and denudation to the surface. This phase of deformation established the overall framework morphology of the northeastern margin of the Tibetan Plateau, including the overall structure of the basins and ranges. 
    more » « less
  4. Abstract

    The early Cenozoic topography of the northern Tibetan plateau remains enigmatic because of the paucity of independent paleoelevation constraints. Long‐held views of northward propagating deformation imply a low Paleogene elevation, but this prediction is speculative. We apply flexural modeling to reconstructed Paleogene isopach data obtained from the Qaidam basin, which requires a larger topographic load in the Qilian Shan and a smaller load in the Eastern Kunlun Shan. Incorporating knowledge of proto‐Paratethys marine incursions in the Paleogene Qaidam basin, we infer a topographically low (0.4–1.0 km) Eastern Kunlun Shan and a higher (0.4–1.5 km) Qilian Shan during the Paleogene. This implied paleo‐relief contrasts with previous predictions and suggests more recently, Neogene surface uplift in the Eastern Kunlun Shan has been more significant than in Qilian Shan, highlighting diachronous growth of the northern Tibetan plateau. The low‐moderate paleoelevation implies a warmer and more humid climate in Northern Tibet during the Paleogene.

     
    more » « less
  5. Abstract

    The Paleogene Lulehe Formation marks the onset of deposition in the Qaidam basin and preserves evidence of the initial topographic growth of northern Tibet. However, limited outcrops impede understanding of the sedimentary features of the Lulehe Formation as well as the tectonic relationship between the basin and surrounding topography. To fill this gap, we investigated core samples along the basin margin and conducted flexural modeling to estimate the topographic load of the Qilian Shan and Eastern Kunlun Shan during the deposition of the Lulehe Formation. Core samples reveal that the Lulehe Formation mainly consists of distal fluvial to marginal lacustrine deposits and proximal fluvial deposits along the southern margin of the basin while characterized by proximal alluvial fan deposits along the northern margin of the basin. Together with evidence for faulting shown on the seismic profiles, we infer that simultaneous deformation within the Qilian Shan and Altyn Tagh Shan during the Paleogene resulted in accumulation of coarse detrital deposits in the northwestern and northeastern Qaidam basin. The simultaneous deformation within the Altyn Tagh Shan and Qilian Shan since the Paleogene supports the idea that deformation in these two regions is kinematically linked. One‐ and two‐load beam flexural modeling indicates that the topographic load generated by both the Eastern Kunlun Shan and the Qilian Shan is responsible for the subsidence of the Qaidam basin during deposition of the Lulehe Formation. Our results highlight the initial relative high topography in the northern Tibetan plateau during the early Cenozoic.

     
    more » « less