skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1914917

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We apply tools from functional data analysis to model cumulative trajectories of COVID-19 cases across countries, establishing a framework for quantifying and comparing cases and deaths across countries longitudinally. It emerges that a country’s trajectory during an initial first month “priming period” largely determines how the situation unfolds subsequently. We also propose a method for forecasting case counts, which takes advantage of the common, latent information in the entire sample of curves, instead of just the history of a single country. Our framework facilitates to quantify the effects of demographic covariates and social mobility on doubling rates and case fatality rates through a time-varying regression model. Decreased workplace mobility is associated with lower doubling rates with a roughly 2 week delay, and case fatality rates exhibit a positive feedback pattern. 
    more » « less
  2. Functional Principal Component Analysis (FPCA) has become a widely used dimension reduction tool for functional data analysis. When additional covariates are available, existing FPCA models integrate them either in the mean function or in both the mean function and the covariance function. However, methods of the first kind are not suitable for data that display second-order variation, while those of the second kind are time-consuming and make it difficult to perform subsequent statistical analyses on the dimension-reduced representations. To tackle these issues, we introduce an eigen-adjusted FPCA model that integrates covariates in the covariance function only through its eigenvalues. In particular, different structures on the covariate-specific eigenvalues—corresponding to different practical problems—are discussed to illustrate the model’s flexibility as well as utility. To handle functional observations under … 
    more » « less
  3. Unlike standard prediction tasks, survival analysis requires modeling right censored data, which must be treated with care. While deep neural networks excel in traditional supervised learning, it remains unclear how to best utilize these models in survival analysis. A key question asks which data-generating assumptions of traditional survival models should be retained and which should be made more flexible via the function-approximating capabilities of neural networks. Rather than estimating the survival function targeted by most existing methods, we introduce a Deep Extended Hazard (DeepEH) model to provide a flexible and general framework for deep survival analysis. The extended hazard model includes the conventional Cox proportional hazards and accelerated failure time models as special cases, so DeepEH subsumes the popular Deep Cox proportional hazard (DeepSurv) and Deep Accelerated Failure Time (DeepAFT) models. We additionally provide theoretical support for the proposed DeepEH model by establishing consistency and convergence rate of the survival function estimator, which underscore the attractive feature that deep learning is able to detect low-dimensional structure of data in high-dimensional space. Numerical experiments also provide evidence that the proposed methods outperform existing statistical and deep learning approaches to survival analysis. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Summary Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. We investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly, and often much, shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed estimator enjoys a convergence rate that is adaptive to the smoothness of the underlying covariance function, and has superior finite-sample performance in simulation studies. 
    more » « less
  8. Deep neural networks obtain state-of-the-art performance on a series of tasks. However, they are easily fooled by adding a small adversarial perturbation to the input. The perturbation is often imperceptible to humans on image data. We observe a significant difference in feature attributions between adversarially crafted examples and original examples. Based on this observation, we introduce a new framework to detect adversarial examples through thresholding a scale estimate of feature attribution scores. Furthermore, we extend our method to include multi-layer feature attributions in order to tackle attacks that have mixed confidence levels. As demonstrated in extensive experiments, our method achieves superior performances in distinguishing adversarial examples from popular attack methods on a variety of real data sets compared to state-of-the-art detection methods. In particular, our method is able to detect adversarial examples of mixed confidence levels, and transfer between different attacking methods. We also show that our method achieves competitive performance even when the attacker has complete access to the detector. 
    more » « less