With the increase in data transmissions and network traffic over the years, there has been an increase in concerns about protecting network data and information from snooping. With this concern, encryptions are incorporated into network protocols. From wireless protocols to web and phone applications, systems that handle the going and coming of data on the network have applied different kinds of encryptions to protect the confidentiality and integrity of their data transfers. The addition of encryptions poses a new question. What will be observed from encrypted traffic data? This work in progress research delivers an in-depth overview of the ZigBee protocol and analyzes encrypted ZigBee traffic on the ZigBee network. From our analysis, we developed possible strategies for ZigBee traffic analysis. Adopting the proposed strategy makes it possible to detect encrypted traffic activities and patterns of use on the ZigBee network. To the best of our knowledge, this is the first work that tries to understand encrypted ZigBee traffic. By understanding what can be gained from encrypted traffic, this work will benefit the security and privacy of the ZigBee protocol.
more »
« less
Side-Channel VoIP Profiling Attack against Customer Service Automated Phone System
In many VoIP systems, Voice Activity Detection (VAD) is often used on VoIP traffic to suppress packets of silence in order to reduce the bandwidth consumption of phone calls. Unfortunately, although VoIP traffic is fully encrypted and secured, traffic analysis of this suppression can reveal identifying information about calls made to customer service automated phone systems. Because different customer service phone systems have distinct, but fixed (pre-recorded) automated voice messages sent to customers, VAD silence suppression used in VoIP will enable an eavesdropper to profile and identify these automated voice messages. In this paper, we will use a popular enterprise VoIP system (Cisco CallManager), running the default Session Initiation Protocol (SIP) protocol, to demonstrate that an attacker can reliably use the silence suppression to profile calls to such VoIP systems. Our real-world experiments demonstrate that this side-channel profiling attack can be used to accurately identify not only what customer service phone number a customer calls, but also what following options are subsequently chosen by the caller in the phone conversation.
more »
« less
- Award ID(s):
- 1915780
- PAR ID:
- 10487298
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- GLOBECOM 2022 - 2022 IEEE Global Communications Conference
- ISBN:
- 978-1-6654-3540-6
- Page Range / eLocation ID:
- 6091 to 6096
- Format(s):
- Medium: X
- Location:
- Rio de Janeiro, Brazil
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A typical way in which network data is recorded is to measure all interactions involving a specified set of core nodes, which produces a graph containing this core together with a potentially larger set of fringe nodes that link to the core. Interactions between nodes in the fringe, however, are not present in the resulting graph data. For example, a phone service provider may only record calls in which at least one of the participants is a customer; this can include calls between a customer and a non-customer, but not between pairs of non-customers. Knowledge of which nodes belong to the core is crucial for interpreting the dataset, but this metadata is unavailable in many cases, either because it has been lost due to difficulties in data provenance, or because the network consists of “found data” obtained in settings such as counter-surveillance. This leads to an algorithmic problem of recovering the core set. Since the core is a vertex cover, we essentially have a planted vertex cover problem, but with an arbitrary underlying graph. We develop a framework for analyzing this planted vertex cover problem, based on the theory of fixed-parameter tractability, together with algorithms for recovering the core. Our algorithms are fast, simple to implement, and out-perform several baselines based on core-periphery structure on various real-world datasets.more » « less
-
ABSTRACT. A typical way in which network data is recorded is to measure all the interactions among a specified set of core nodes; this produces a graph containing this core together with a potentially larger set of fringe nodes that have links to the core. Interactions between pairs of nodes in the fringe, however, are not recorded by this process, and hence not present in the resulting graph data. For example, a phone service provider may only have records of calls in which at least one of the participants is a customer; this can include calls between a customer and a non-customer, but not between pairs of non-customers. Knowledge of which nodes belong to the core is an important piece of metadata that is crucial for interpreting the network dataset. But in many cases, this metadata is not available, either because it has been lost due to difficulties in data provenance, or because the network consists of “found data” obtained in settings such as counter-surveillance. This leads to a natural algorithmic problem, namely the recovery of the core set. Since the core set forms a vertex cover of the graph, we essentially have a planted vertex cover problem, but with an arbitrary underlying graph. We develop a theoretical framework for analyzing this planted vertex cover problem, based on results in the theory of fixed- parameter tractability, together with algorithms for recovering the core. Our algorithms are fast, simple to implement, and out-perform several methods based on network core-periphery structure on various real-world datasets.more » « less
-
It is estimated that by the year 2024, the total number of systems equipped with voice assistant software will exceed 8.4 billion devices globally. While these devices provide convenience to consumers, they suffer from a myriad of security issues. This paper highlights the serious privacy threats exposed by information leakage in a smart assistant's encrypted network traffic metadata. To investigate this issue, we have collected a new dataset composed of dynamic and static commands posed to an Amazon Echo Dot using data collection and cleaning scripts we developed. Furthermore, we propose the Smart Home Assistant Malicious Ensemble model (SHAME) as the new state-of-the-art Voice Command Fingerprinting classifier. When evaluated against several datasets, our attack correctly classifies encrypted voice commands with up to 99.81% accuracy on Google Home traffic and 95.2% accuracy on Amazon Echo Dot traffic. These findings show that security measures must be taken to stop internet service providers, nation-states, and network eavesdroppers from monitoring our intimate conversations.more » « less
-
Background Inhibitory control, or inhibition, is one of the core executive functions of humans. It contributes to our attention, performance, and physical and mental well-being. Our inhibitory control is modulated by various factors and therefore fluctuates over time. Being able to continuously and unobtrusively assess our inhibitory control and understand the mediating factors may allow us to design intelligent systems that help manage our inhibitory control and ultimately our well-being. Objective The aim of this study is to investigate whether we can assess individuals’ inhibitory control using an unobtrusive and scalable approach to identify digital markers that are predictive of changes in inhibitory control. Methods We developed InhibiSense, an app that passively collects the following information: users’ behaviors based on their phone use and sensor data, the ground truths of their inhibition control measured with stop-signal tasks (SSTs) and ecological momentary assessments (EMAs), and heart rate information transmitted from a wearable heart rate monitor (Polar H10). We conducted a 4-week in-the-wild study, where participants were asked to install InhibiSense on their phone and wear a Polar H10. We used generalized estimating equation (GEE) and gradient boosting tree models fitted with features extracted from participants’ phone use and sensor data to predict their stop-signal reaction time (SSRT), an objective metric used to measure an individual’s inhibitory control, and identify the predictive digital markers. Results A total of 12 participants completed the study, and 2189 EMAs and SST responses were collected. The results from the GEE models suggest that the top digital markers positively associated with an individual’s SSRT include phone use burstiness (P=.005), the mean duration between 2 consecutive phone use sessions (P=.02), the change rate of battery level when the phone was not charged (P=.04), and the frequency of incoming calls (P=.03). The top digital markers negatively associated with SSRT include the standard deviation of acceleration (P<.001), the frequency of short phone use sessions (P<.001), the mean duration of incoming calls (P<.001), the mean decibel level of ambient noise (P=.007), and the percentage of time in which the phone was connected to the internet through a mobile network (P=.001). No significant correlation between the participants’ objective and subjective measurement of inhibitory control was found. Conclusions We identified phone-based digital markers that were predictive of changes in inhibitory control and how they were positively or negatively associated with a person’s inhibitory control. The results of this study corroborate the findings of previous studies, which suggest that inhibitory control can be assessed continuously and unobtrusively in the wild. We discussed some potential applications of the system and how technological interventions can be designed to help manage inhibitory control.more » « less
An official website of the United States government
