skip to main content

Search for: All records

Award ID contains: 1916068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Laser-driven nonlinear phenomena can both reveal the structural features of materials and become the basis for the development of various translated technologies, including highly intense terahertz sources. Here we realize a modified single-color double-pulse excitation scheme for enhancing the terahertz wave generation in flat liquid jets, and we show that the pre-ionization effect is crucial for finding the optimal input conditions. The experimental results, being supported by numerical simulations, reveal the preference for longer pre-pulses to induce the effective ionization process and shorter signals for the strong laser-plasma interaction. In addition to the identified features of the terahertz wave energy enhancement with respect to the duration change for both pulses and their ratio variation, we state the possibility of achieving the optical-to-THz conversion efficiency value up to 0.1% in the case of double-pulse excitation of anα-pinene jet.

  2. Broadband terahertz (THz) wave emission from flowing liquid targets has been demonstrated under short optical pulse excitation. Observations have been reported by using liquid THz sources, including optimal angle of incidence, preference of subpicosecond pulse excitation, and strong sideway emission. Compared with solid targets, the fluidity of liquid allows each laser pulse to interact with a fresh area, which makes it possible to use a table-top laser with a high repetition rate for excitation. Liquids with a comparable material density to solids make them promising candidates for the study of high-density plasma and bright THz sources. In this paper, we review recent progress, challenges, and opportunities of THz emission from liquids. This topic may offer new possibilities in the exploration of THz liquid photonics and may play an indispensable role in the study of laser-liquid interaction.

  3. Abstract Terahertz technology has broad application prospects in biomedical detection. However, the mixed characteristics of actual samples make the terahertz spectrum complex and difficult to distinguish, and there is no practical terahertz detection method for clinical medicine. Here, we propose a three-step one-way terahertz model, presenting a detailed flow analysis of terahertz technology in the biomedical detection of renal fibrosis as an example: 1) biomarker determination: screening disease biomarkers and establishing the terahertz spectrum and concentration gradient; 2) mixture interference removal: clearing the interfering signals in the mixture for the biomarker in the animal model and evaluating and retaining the effective characteristic peaks; and 3) individual difference removal: excluding individual interference differences and confirming the final effective terahertz parameters in the human sample. The root mean square error of our model is three orders of magnitude lower than that of the gold standard, with profound implications for the rapid, accurate and early detection of diseases.
  4. We characterize a terahertz (THz) source based on plasma in liquid gallium. The dependence of the emitted THz pulse energy on second-order phase, pump pulse energy, and polarization of the short laser pulse is demonstrated. Our study suggests that the THz emission mechanism is due to the ponderomotive force and is aided by a direct-field driven term. The proposed source and accompanying generation mechanism are studied under a non-relativistic regime (1015<<#comment/>I<<#comment/>1018W/cm2) for forward directed THz under a single pump excitation scheme.

  5. Matters are generally classified within four states: solid, liquid, gas, and plasma. Three of the four states of matter (solid, gas, and plasma) have been used for THz wave generation with short laser pulse excitation for decades, including the recent vigorous development of THz photonics in gases (air plasma). However, the demonstration of THz generation from liquids was conspicuously absent. It is well known that water, the most common liquid, is a strong absorber in the far infrared range. Therefore, liquid water has historically been sworn off as a source for THz radiation. Recently, broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma. The liquid target as the THz source presents unique properties. Specifically, liquids have the comparable material density to that of solids, meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases. In contrast with solid targets, the fluidity of liquid allows every laser pulse to interact with a fresh area on the target, meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses. These make liquids very promising candidates for the investigationmore »of high-energy-density plasma, as well as the possibility of being the next generation of THz sources.« less