skip to main content


Search for: All records

Award ID contains: 1916163

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adaptive experimental designs can dramatically improve efficiency in randomized trials. But with adaptively collected data, common estimators based on sample means and inverse propensity-weighted means can be biased or heavy-tailed. This poses statistical challenges, in particular when the experimenter would like to test hypotheses about parameters that were not targeted by the data-collection mechanism. In this paper, we present a class of test statistics that can handle these challenges. Our approach is to adaptively reweight the terms of an augmented inverse propensity-weighting estimator to control the contribution of each term to the estimatorā€™s variance. This scheme reduces overall variance and yields an asymptotically normal test statistic. We validate the accuracy of the resulting estimates and their CIs in numerical experiments and show that our methods compare favorably to existing alternatives in terms of mean squared error, coverage, and CI size. 
    more » « less
  2. In many areas, practitioners seek to use observational data to learn a treatment assignment policy that satisfies applicationā€specific constraints, such as budget, fairness, simplicity, or other functional form constraints. For example, policies may be restricted to take the form of decision trees based on a limited set of easily observable individual characteristics. We propose a new approach to this problem motivated by the theory of semiparametrically efficient estimation. Our method can be used to optimize either binary treatments or infinitesimal nudges to continuous treatments, and can leverage observational data where causal effects are identified using a variety of strategies, including selection on observables and instrumental variables. Given a doubly robust estimator of the causal effect of assigning everyone to treatment, we develop an algorithm for choosing whom to treat, and establish strong guarantees for the asymptotic utilitarian regret of the resulting policy. 
    more » « less
  3. Summary Flexible estimation of heterogeneous treatment effects lies at the heart of many statistical applications, such as personalized medicine and optimal resource allocation. In this article we develop a general class of two-step algorithms for heterogeneous treatment effect estimation in observational studies. First, we estimate marginal effects and treatment propensities to form an objective function that isolates the causal component of the signal. Then, we optimize this data-adaptive objective function. The proposed approach has several advantages over existing methods. From a practical perspective, our method is flexible and easy to use: in both steps, any loss-minimization method can be employed, such as penalized regression, deep neural networks, or boosting; moreover, these methods can be fine-tuned by cross-validation. Meanwhile, in the case of penalized kernel regression, we show that our method has a quasi-oracle property. Even when the pilot estimates for marginal effects and treatment propensities are not particularly accurate, we achieve the same error bounds as an oracle with prior knowledge of these two nuisance components. We implement variants of our approach based on penalized regression, kernel ridge regression, and boosting in a variety of simulation set-ups, and observe promising performance relative to existing baselines. 
    more » « less
  4. Discussion of "Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects" 
    more » « less