skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1916476

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Point processes are probabilistic tools for modelling event data. While there exists a fast-growing literature on the relationships between point processes, how such relationships connect to causal effects remains unexplored. In the presence of unmeasured confounders, parameters from point process models do not necessarily have causal interpretations. We propose an instrumental variable method for causal inference with point process treatment and outcome. We define causal quantities based on potential outcomes and establish nonparametric identification results with a binary instrumental variable. We extend the traditional Wald estimation to deal with point process treatment and outcome, showing that it should be performed after a Fourier transform of the intention-to-treat effects on the treatment and outcome, and thus takes the form of deconvolution. We refer to this approach as generalized Wald estimation and propose an estimation strategy based on well-established deconvolution methods. 
    more » « less