skip to main content


Search for: All records

Award ID contains: 1916550

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A software update is a critical but complicated part of software security. Its delay poses risks due to vulnerabilities and defects of software. Despite the high demand to shorten the update lag and keep the software up-to-date, software updates involve factors such as human behavior, program configurations, and system policies, adding variety in the updates of software. Investigating these factors in a real environment poses significant challenges such as the knowledge of software release schedules from the software vendors and the deployment times of programs in each user’s machine. Obtaining software release plans requires information from vendors which is not typically available to public. On the users’ side, tracking each software’s exact update installation is required to determine the accurate update delay. Currently, a scalable and systematic approach is missing to analyze these two sides’ views of a comprehensive set of software. We performed a long term system-wide study of update behavior for all software running in an enterprise by translating the operating system logs from enterprise machines into graphs of binary executable updates showing their complex, and individualized updates in the environment. Our comparative analysis locates risky machines and software with belated or dormant updates falling behind others within an enterprise without relying on any third-party or domain knowledge, providing new observations and opportunities for improvement of software updates. Our evaluation analyzes real data from 113,675 unique programs used by 774 computers over 3 years. 
    more » « less
  2. null (Ed.)
    e present a novel AI-based methodology that identifies phases of a host-level cyber attack simply from system call logs. System calls emanating from cyber attacks on hosts such as honey pots are often recorded in audit logs. Our methodology first involves efficiently loading, caching, processing, and querying system events contained in audit logs in support of computer forensics. Output of queries remains at the system call level and is difficult to process. The next step is to infer a sequence of abstracted actions, which we colloquially call a storyline, from the system calls given as observations to a latent-state probabilistic model. These storylines are then accurately identified with class labels using a learned classifier. We qualitatively and quantitatively evaluate methods and models for each step of the methodology using 114 different attack phases collected by logging the attacks of a red team on a server, on some likely benign sequences containing regular user activities, and on traces from a recent DARPA project. The resulting end-to-end system, which we call Cyberian, identifies the attack phases with a high level of accuracy illustrating the benefit that this machine learning-based methodology brings to security forensics. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)