skip to main content


Search for: All records

Award ID contains: 1916804

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo-versusheterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers inArabidopsisand show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.

     
    more » « less
  2. Abstract

    Historically, xenia effects were hypothesized to be unique genetic contributions of pollen to seed phenotype, but most examples represent standard complementation of Mendelian traits. We identified the imprinteddosage-effect defective1(ded1) locus in maize (Zea mays) as a paternal regulator of seed size and development. Hypomorphic alleles show a 5–10% seed weight reduction whended1is transmitted through the male, while homozygous mutants are defective with a 70–90% seed weight reduction.Ded1encodes an R2R3-MYB transcription factor expressed specifically during early endosperm development with paternal allele bias. DED1 directly activates early endosperm genes and endosperm adjacent to scutellum cell layer genes, while directly repressing late grain-fill genes. These results demonstrate xenia as originally defined: Imprinting ofDed1causes the paternal allele to set the pace of endosperm development thereby influencing grain set and size.

     
    more » « less
  3. SUMMARY

    The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis viniferaL.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP‐Seq) allows for the genome‐wide TF‐binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP‐Seq of MYB14/MYB15 was combined with aggregate gene co‐expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47STSfamily genes. Moreover, all three MYBs bind to severalPAL,C4H, and4CLgenes, in addition to shikimate pathway genes, theWRKY03stilbenoid co‐regulator and resveratrol‐modifying gene candidates among which ROMT2‐3 were validated enzymatically. A high proportion of DAP‐Seq bound genes were induced in the activated transcriptomes of transientMYB15‐overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3‐MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP‐Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome‐wide approaches in the context of non‐model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.

     
    more » « less
  4. Summary

    Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green‐to‐mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood.

    We investigated the function of the transcriptional regulatorVviNAC33by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP‐seq) approach combined with transcriptomic data.

    We demonstrated that VviNAC33 induces leaf de‐greening, inhibits organ growth and directly activates the expression ofSTAY‐GREEN PROTEIN 1(SGR1), which is involved in Chl and photosystem degradation, andAUTOPHAGY 8f(ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibitsAUXIN EFFLUX FACILITATOR PIN1,RopGEF1andATP SYNTHASE GAMMA CHAIN 1T(ATPC1), which are involved in photosystem II integrity and activity.

    Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative‐to‐mature phase transition.

     
    more » « less
  5. ZMP enables RNA-directed DNA methylation at pericentromeric repeats and prevents it from euchromatic regions. 
    more » « less
  6. null (Ed.)
  7. With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them. 
    more » « less