skip to main content

Search for: All records

Award ID contains: 1917503

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Regional and local climate change depends on continentality, orography, and human activities. In particular, local climate modification by water reservoirs can reach far from shore and downstream. Among the possible ecological consequences are shifts in plant performance. Tree-ring width of affected trees can potentially be used as proxies for reservoir impact. Correlation analysis andt-tests were applied to climatic data and tree-ring chronologies ofPinus sylvestrisL. andLarix sibiricaLedeb. from moisture-deficit habitats in the intermontane Khakass-Minusinsk Depression, to assess modification of climate and tree growth by the Krasnoyarsk and Sayano-Shushenskoe Reservoirs on the Yenisei River. Abrupt significant cooling in May–August and warming in September-March occurred after the launch of the turbines in dams, more pronounced near the Sayano-Shushenskoe dam (up to – 0.5 °C in summer and to + 3.5 °C in winter) than near the Krasnoyarsk Reservoir headwaters (– 0.3 °C and + 1.4 °C). Significant lengthening of the warm season was also found for temperature thresholds 0–8 °C. Shifts of seasonality and intensity occurred in climatic responses of all tree-ring chronologies after development of water reservoirs. Patterns of these shifts, however, depended on species-specific sensitivity to climatic modification, distance from reservoirs, and physiographic regions. Mitigation of climate continentality and extremes by reservoirs appears to have offset possible negative effects of warmingmore »on tree growth.

    « less
  2. Abstract The Yenisei River is the largest contributor of freshwater and energy fluxes among all rivers draining to the Arctic Ocean. Modeling long-term variability of Eurasian runoff to the Arctic Ocean is complicated by the considerable variability of river discharge in time and space, and the monitoring constraints imposed by a sparse gauged-flow network and paucity of satellite data. We quantify tree growth response to river discharge at the upper reaches of the Yenisei River in Tuva, South Siberia. Two regression models built from eight tree-ring width chronologies of Larix sibirica are applied to reconstruct winter (Nov–Apr) discharge for the period 1784–1997 (214 years), and annual (Oct–Sept) discharge for the period 1701–2000 (300 years). The Nov–Apr model explains 52% of the discharge variance whereas Oct–Sept explains 26% for the calibration intervals 1927–1997 and 1927–2000, respectively. This new hydrological archive doubles the length of the instrumental discharge record at the Kyzyl gauge and resets the temporal background of discharge variability back to 1784. The reconstruction finds a remarkable 80% upsurge in winter flow over the last 25 years, which is unprecedented in the last 214 years. In contrast, annual discharge fluctuated normally for this system, with only a 7% increase overmore »the last 25 years. Water balance modeling with CRU data manifests a significant discrepancy between decadal variability of the gauged flow and climate data after 1960. We discuss the impact on the baseflow rate change of both the accelerating permafrost warming in the discontinuous zone of South Siberia and widespread forest fires. The winter discharge accounts for only one third of the annual flow, yet the persistent 25 year upsurge is alarming. This trend is likely caused by Arctic Amplification, which can be further magnified by increased winter flow delivering significantly more fresh water to the Kara Sea during the cold season.« less
  3. Dendroclimatology has focused mainly on the tree growth response to atmospheric variables. However, the roots of trees directly sense the “underground climate,” which can be expected to be no less important to tree growth. Data from two meteorological stations approximately 140 km apart in southern Siberia were applied to characterize the spatiotemporal dynamics of soil temperature and the statistical relationships of soil temperature to the aboveground climate and tree-ring width (TRW) chronologies of Larix sibirica Ledeb. from three forest–steppe stands. Correlation analysis revealed a depth-dependent delay in the maximum correlation of TRW with soil temperature. Temperatures of both the air and soil (depths 20–80 cm) were shown to have strong and temporally stable correlations between stations. The maximum air temperature is inferred to have the most substantial impact during July–September (R = −0.46–−0.64) and early winter (R = 0.39–0.52). Tree-ring indices reached a maximum correlation with soil temperature at a depth of 40 cm (R = −0.49–−0.59 at 40 cm) during April–August. High correlations are favored by similar soil characteristics at meteorological stations and tree-ring sites. Cluster analysis of climate correlations for individual trees based on the K-means revealed groupings of trees driven by microsite conditions, competition, and age. Themore »results support a possible advantage of soil temperature over air temperature for dendroclimatic analysis of larch growth in semiarid conditions during specific seasons.« less