Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Continental formation models invoke subduction or plume‐related processes to create the buoyant, refractory character of continental lithospheric mantle (CLM). From similarities in melt depletion, major element composition, modal clinopyroxene, and Os isotope systematics it has been proposed that oceanic mantle lithosphere is the likely protolith to non‐cratonic CLM, however, a direct link between the two has been difficult to ascertain. Using dredged mantle peridotite xenoliths from the Ferrel Seamount, off the west coast of Baja California, Mexico, we show that tectonic isolation of an oceanic plate may lead to formation of non‐cratonic CLM. Ferrel xenoliths are coarse‐grained spinel lherzolite, or rare harzburgite. Bulk‐rock and clinopyroxene trace element compositions reveal two‐stages of melt refertilization following melt depletion, with infiltration by mid‐ocean ridge basalt‐type melts, followed by melt addition from host alkali basalt. Melt depletion correlations with187Os/188Os and highly siderophile element abundances indicate preserved melt depletion and refertilization processes are ancient. From these observations, the Ferrel xenoliths represent lithosphere from the abandoned Pacific‐Farallon ridge. The history of melt depletion, followed by MORB‐melt refertilization is consistent with the peridotites representing oceanic mantle lithosphere that was subsequently incorporated into the Baja‐Guadalupe microplate during “ridge jump.” These peridotites demonstrate that isolation of oceanic lithosphere that is rafted onto a continental margin provides a viable means for producing non‐cratonic CLM. We suggest that continuation of late‐stage, low degree melt refertilization may provide a link between oceanic lithosphere and non‐cratonic CLM and propose a tectonic model to preserve and facilitate this continued evolution.more » « less
-
ABSTRACT Peridotites from the Tonga Trench are some of the deepest-derived and freshest ever obtained from the seafloor. This study reports new bulk-rock major-, trace-, highly siderophile-element (HSE) abundance and 187Os/188Os data, as well as major- and trace-element abundances of mineral phases for NOVA88D dredge peridotites. The samples are harzburgites that experienced varying degrees of serpentinization, recorded in their loss on ignition (LOI) values, from zero to 16.7%. Degree of serpentinization in samples is correlated with Na, B, K, Sr, Ca, Rb and U, and weakly correlated with W, Fe, Pb, Cs and Li abundances, but is uncorrelated with other lithophile elements, most especially the rare earth elements (REE). Serpentinization had no systematic effect on the HSE abundances or 187Os/188Os compositions in the harzburgites. NOVA88D harzburgites record >18% melt depletion which has resulted in heterogenous distribution of the HSE within the rocks, likely due to retention of these elements within sub-micron sized alloy or sulphide phases. Time of rhenium depletion (TRD) ages, recorded by Os isotopes, average ~ 0.7 ± 0.4 Ga and can be as ancient as 1.5 Ga. Some harzburgite compositions are consistent with minor melt infiltration processes modifying incompatible trace element compositions and Re abundances, with a possible melt infiltration event at ~120 Ma based on 187Re-188Os, prior to the inception of subduction at the Tonga Trench at ~52 Ma. Evidence for ancient melt depletion, combined with limited melt processing since inception of subduction suggests that NOVA88D harzburgites represent melt residues incorporated into the Tonga arc, rather than their geochemical signatures being produced beneath the recent arc. Estimates of fO2 (~ − 0.4 ± 0.4 ΔFMQ) and olivine-spinel equilibration temperatures for the Tonga Trench samples (830 ± 120 ̊C) are similar to abyssal peridotites and some Izu-Mariana-Bonin peridotites. These values are unlikely to relate directly to recorded degrees of melt depletion and melt depletion ages in the rocks. Refractory residues from prior melt depletion events are probably common in the convecting mantle, and those with high degrees of melt depletion (>18%) and relatively ancient melt depletion ages (<2 Ga) are likely to have been formed during prior melting processes rather than melting processes within their current tectonic setting. These refractory peridotites can be incorporated into a range of tectonic settings, including into mid-ocean ridges, succeeding arcs, or within the continental lithospheric mantle, where they may play a limited role in melt generation processes.more » « less
-
Abstract Consistent 3He/4He ratios have been measured for >25 years in geothermal fluids and gases from Cumbre Vieja, La Palma (9.4 ± 0.1RA, where RA is the 3He/4He of air), and Teide, Tenerife (6.8 ± 0.3RA), Canary Islands. Both locations are characterized by similar CO2/3He (∼2 to 4 × 109), mantle-like δ13C (−3.3‰ to −4.4‰) and CO2 output (0.1–0.2 × 1010 mol yr–1). Helium isotopic differences between the islands cannot be explained by differential aging and 4He ingrowth in their mantle sources. Instead, distinct He reservoirs exist, with a high-μ (HIMU)–type mantle source for La Palma and a more enriched mantle, with possible lithospheric mantle influence, for Tenerife. Geothermal samples from the Canary Islands record a present-day He distribution distinct from higher 3He/4He in olivine from older eastern Canary Island lavas, indicating temporal variability in sources. Comparison of geothermal sample data versus olivine, pyroxene, and glass He isotope data for the Canary Islands, Azores, Cape Verde, Hawaiian islands, and Iceland reveals generally good correspondence, even across >1 m.y. of stratigraphy. However, in addition to the Canary Islands, there are examples of inter-island heterogeneity for He isotopes at Hawaii, the Azores, and within Iceland, preserved in hydrothermal samples, minerals, and glasses. In particular, in northwest Iceland, olivine separates from older lavas preserve higher 3He/4He than present-day geothermal samples from the same region. This difference likely reflects a reduced mantle-derived 3He input to Icelandic magmatism since the Miocene. Temporal variability in 3He/4He, assessed using geothermal and geological materials in conjunction, offers a powerful tool for examining heterogeneity and temporal evolution of mantle sources at intraplate volcanoes.more » « less
-
Abstract Highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), major and trace element abundances, and 187Re–187Os systematics are reported for xenoliths and lavas from Aitutaki (Cook Islands), to investigate the composition of Pacific lithosphere. The xenolith suite comprises spinel-bearing lherzolites, dunite, and harzburgite, along with olivine websterite and pyroxenite. The xenoliths are hosted within nephelinite and alkali basalt volcanic rocks (187Os/188Os ∼0·1363 ± 13; 2SD; ΣHSE = 3–4 ppb). The volcanic host rocks are low-degree (2–5%) partial melts from the garnet stability field and an enriched mantle (EM) source. Pyroxenites have similar HSE abundances and Os isotope compositions (Al2O3 = 5·7–8·3 wt %; ΣHSE = 2–4 ppb; 187Os/187Os = 0·1263–0·1469) to the lavas. The pyroxenite and olivine websterite xenoliths directly formed from—or experienced extensive melt–rock interaction with—melts similar in composition to the volcanic rocks that host the xenoliths. Conversely, the Aitutaki lherzolites, harzburgites and dunites are similar in composition to abyssal peridotites with respect to their 187Os/188Os ratios (0·1264 ± 82), total HSE abundances (ΣHSE = 8–28 ppb) and major element abundances, forsterite contents (Fo89·9±1·2), and estimated extents of melt depletion (<10 to >15%). These peridotites are interpreted to sample relatively shallow Pacific mantle lithosphere that experienced limited melt–rock reaction and melting during ridge processes at ∼90 Ma. A survey of maximum time of rhenium depletion ages of Pacific mantle lithosphere from the Cook (Aitutaki ∼1·5 Ga), Austral (Tubuai’i ∼1·8 Ga), Samoan (Savai’i ∼1·5 Ga) and Hawaiian (Oa’hu ∼2 Ga) island groups shows that Mesoproterozoic to Neoproterozoic depletion ages are preserved in the xenolith suites. The variable timing and extent of mantle depletion preserved by the peridotites is, in some instances, superimposed by extensive and recent melt depletion as well as melt refertilization. Collectively, Pacific Ocean island mantle xenolith suites have similar distributions and variations of 187Os/188Os and HSE abundances to global abyssal peridotites. These observations indicate that Pacific mantle lithosphere is typical of oceanic lithosphere in general, and that this lithosphere is composed of peridotites that have experienced both recent melt depletion at ridges and prior and sometimes extensive melt depletion across several Wilson cycles spanning periods in excess of two billion years.more » « less
-
Osmium isotope and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for picrites and basalts from the ∼132 Ma Etendeka large igneous province (LIP) and the ∼60 Ma North Atlantic Igneous Province (NAIP). Picrite dykes of the Etendeka LIP have HSE abundances and 187Os/188Os (0.1276 to 0.1323; γOsi = -0.5 to +3.1) consistent with derivation from high-degree partial melting (>20 %) of a peridotite source with chondritic to modestly supra-chondritic long-term Re/Os. High-3He/4He NAIP picrites from West Greenland represent large-degree partial melts with similarly elevated HSE abundances and 187Os/188Os (0.1273 to 0.1332; γOsi = -0.2 to +3.9). Broadly chondritic Os isotope ratios have also been reported for the ∼132 Ma Paraná LIP and the ∼201 Ma Central Atlantic Magmatic Province (CAMP). Consequently, LIP associated with Atlantic Ocean opening derive, at least in part, from partial melting of peridotite mantle distinct from the depleted mantle associated with mid-ocean ridge basalt volcanism. Modern locations with high-3He/4He (>25RA) include ocean island basalts (OIB) from Ofu (Samoa), Loihi (Hawaii) and Fernandina (Galapagos) in the Pacific Ocean, and from Iceland, which is considered the modern manifestation of NAIP magmatism. Unlike Etendeka and NAIP picrites, these modern OIB have Sr-Nd-Pb-Os isotopes consistent with contributions of recycled oceanic or continental crust. The lower degree of partial melting responsible for modern high-3He/4He OIB gives higher proportions of fusible recycled crustal components to the magmas, with radiogenic 187Os/188Os and low-3He/4He. The high-3He/4He, incompatible trace element-depleted mantle component in both LIP and OIB therefore also has long-term chondritic Re/Os, which is consistent with an early-formed reservoir that experienced late accretion. Atlantic LIP (CAMP; Paraná-Etendeka; NAIP) provide geochemical evidence for a prominent role for mantle plume contributions during continental break-up and formation of the Atlantic Ocean, a feature hitherto unrecognized in other ocean basin-forming events.more » « less
-
Incandescent pyroclasts of more than 64 mm in diameter erupted from active volcanoes are known as bombs and pose a significant hazard to life and infrastructure. Volcanic ballistic projectile hazard assessment normally considers fall as the main transport process, estimating its intensity from bomb location and impact cratering. We describe ballistically ejected bombs observed during the late October 2021 episode of eruption at La Palma (Canary Islands) that additionally travelled downhill by rolling and bouncing on the steep tephra-dominated cone. These bouncing bombs travelled for distances >1 km beyond their initial impact sites, increasing total travel distance by as much as 100%. They left multiple impact craters on their travel path and frequently spalled incandescent fragments on impact with substrate, leading to significant fire hazard for partially buried trees and structures far beyond the range of ballistic transport. We term these phenomena as bouncing spallation bombs. The official exclusion zone encompassed this hazard at La Palma, but elsewhere bouncing spallation bombs ought to be accounted for in risk assessment, necessitating awareness of an increased hazard footprint on steep-sided volcanoes with ballistic activity.more » « less
An official website of the United States government
