Abstract The feedback between dyke and sill intrusions and the evolution of stresses within volcanic systems is poorly understood, despite its importance for magma transport and volcano instability. Long-lived ocean island volcanoes are crosscut by thousands of dykes, which must be accommodated through a combination of flank slip and visco-elastic deformation. Flank slip is dominant in some volcanoes (e.g., Kilauea), but how intrusions are accommodated in other volcanic systems remains unknown. Here we apply digital mapping techniques to collect > 400,000 orientation and aperture measurements from 519 sheet intrusions within Volcán Taburiente (La Palma, Canary Islands, Spain) and investigate their emplacement and accommodation. We show that vertically ascending dykes were deflected to propagate laterally as they approached the surface of the volcano, forming a radial dyke swarm, and propose a visco-elastic model for their accommodation. Our model reproduces the measured dyke-aperture distribution and predicts that stress accumulates within densely intruded regions of the volcano, blocking subsequent dykes and causing eruptive activity to migrate. These results have significant implications for the organisation of magma transport within volcanic edifices, and the evolution and stability of long-lived volcanic systems.
more »
« less
Bouncing Spallation Bombs During the 2021 La Palma Eruption, Canary Islands, Spain
Incandescent pyroclasts of more than 64 mm in diameter erupted from active volcanoes are known as bombs and pose a significant hazard to life and infrastructure. Volcanic ballistic projectile hazard assessment normally considers fall as the main transport process, estimating its intensity from bomb location and impact cratering. We describe ballistically ejected bombs observed during the late October 2021 episode of eruption at La Palma (Canary Islands) that additionally travelled downhill by rolling and bouncing on the steep tephra-dominated cone. These bouncing bombs travelled for distances >1 km beyond their initial impact sites, increasing total travel distance by as much as 100%. They left multiple impact craters on their travel path and frequently spalled incandescent fragments on impact with substrate, leading to significant fire hazard for partially buried trees and structures far beyond the range of ballistic transport. We term these phenomena as bouncing spallation bombs. The official exclusion zone encompassed this hazard at La Palma, but elsewhere bouncing spallation bombs ought to be accounted for in risk assessment, necessitating awareness of an increased hazard footprint on steep-sided volcanoes with ballistic activity.
more »
« less
- Award ID(s):
- 1918322
- PAR ID:
- 10522726
- Publisher / Repository:
- The Geological Society of London
- Date Published:
- Journal Name:
- Earth Science, Systems and Society
- Volume:
- 2
- ISSN:
- 2634-730X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We describe and interpret deposits associated with the final Ubehebe Crater-forming, phreatomagmatic explosive phase of the multivent, monogenetic Ubehebe volcanic center. Ubehebe volcano is located in Death Valley, California, USA. Pyroclastic deposits occur in four main facies: (1) lapilli- and blockdominated beds, (2) thinly bedded lapilli tuff, (3) laminated and cross-laminated ash, and (4) massive lapilli ash/tuff. Lapilli- and block-dominated beds are found mostly within several hundred meters of the crater and transition outward into discontinuous lenses of lapilli and blocks; they are interpreted to have been deposited by ballistic processes associated with crater-forming explosions. Thinly bedded lapilli tuff is found mainly within several hundred meters, and laminated and cross-laminated ash extends at least 9 km from the crater center. Dune forms are common within ~2 km of the crater center, while finer-grained, distal deposits tend to exhibit planar lamination. These two facies (thinly bedded lapilli tuff and laminated and cross-laminated ash) are interpreted to record multiple pyroclastic surges (dilute pyroclastic currents). Repeated couplets of coarse layers overlain by finer-grained, laminated horizons suggest that many or most of the surges were transient, likely recording individual explosions, and they traveled over complex topography in some areas. These two factors complicate the application of classical sediment-transport theory to quantify surge properties. However, dune-form data provide possible constraints on the relationships between suspended load sedimentation and bed-load transport that are consistent using two independent approaches. Massive lapilli ash/tuff beds occur in drainages below steep slopes and can extend up to ~1 km onto adjacent valley floors beneath large catchments. Although they are massive in texture, their grain-size characteristics are shared with laminated and cross-laminated ash facies, with which they are locally interbedded. These are interpreted to record concentrated granular flows sourced by remobilized pyroclastic surge deposits, either during surge transport or shortly after, while the surge deposits retained their elevated initial pore-gas pressures. Although similar surge-derived concentrated flows have been described elsewhere (e.g., Mount St. Helens, Washington, USA, and Soufriére Hills, Montserrat, West Indies), to our knowledge Ubehebe is the first case where such processes have been identified at a maar volcano. These concentrated flows followed paths that were independent of the pyroclastic surges and represent a potential hazard at similar maar volcanoes in areas with complex terrain.more » « less
-
Abstract Consistent 3He/4He ratios have been measured for >25 years in geothermal fluids and gases from Cumbre Vieja, La Palma (9.4 ± 0.1RA, where RA is the 3He/4He of air), and Teide, Tenerife (6.8 ± 0.3RA), Canary Islands. Both locations are characterized by similar CO2/3He (∼2 to 4 × 109), mantle-like δ13C (−3.3‰ to −4.4‰) and CO2 output (0.1–0.2 × 1010 mol yr–1). Helium isotopic differences between the islands cannot be explained by differential aging and 4He ingrowth in their mantle sources. Instead, distinct He reservoirs exist, with a high-μ (HIMU)–type mantle source for La Palma and a more enriched mantle, with possible lithospheric mantle influence, for Tenerife. Geothermal samples from the Canary Islands record a present-day He distribution distinct from higher 3He/4He in olivine from older eastern Canary Island lavas, indicating temporal variability in sources. Comparison of geothermal sample data versus olivine, pyroxene, and glass He isotope data for the Canary Islands, Azores, Cape Verde, Hawaiian islands, and Iceland reveals generally good correspondence, even across >1 m.y. of stratigraphy. However, in addition to the Canary Islands, there are examples of inter-island heterogeneity for He isotopes at Hawaii, the Azores, and within Iceland, preserved in hydrothermal samples, minerals, and glasses. In particular, in northwest Iceland, olivine separates from older lavas preserve higher 3He/4He than present-day geothermal samples from the same region. This difference likely reflects a reduced mantle-derived 3He input to Icelandic magmatism since the Miocene. Temporal variability in 3He/4He, assessed using geothermal and geological materials in conjunction, offers a powerful tool for examining heterogeneity and temporal evolution of mantle sources at intraplate volcanoes.more » « less
-
Abstract. We report in-plume carbon dioxide (CO2) concentrations and carbon isotope ratios during the 2021 eruption of Tajogaite volcano, island of La Palma, Spain. CO2 measurements inform our understanding of volcanic contributions to the global climate carbon cycle and the role of CO2 in eruptions. Traditional ground-based methods of CO2 collection are difficult and dangerous, and as a result only about 5 % of volcanoes have been directly surveyed. We demonstrate that unpiloted aerial system (UAS) surveys allow for fast and relatively safe measurements. Using CO2 concentration profiles we estimate the total flux during several measurements in November 2021 to be 1.76±0.20×103 to 2.23±0.26×104 t d−1. Carbon isotope ratios of plume CO2 indicate a deep magmatic source, consistent with the intensity of the eruption. Our work demonstrates the feasibility of UASs for CO2 surveys during active volcanic eruptions, particularly for deriving rapid emission estimates.more » « less
-
Abstract The 2021 La Palma eruption (Tajogaite) was unprecedented in magnitude, duration, and degree of monitoring compared to historical volcanism on La Palma. Here, we provide data on melt inclusions in samples from the beginning and end of the eruption to compare the utility of both melt and fluid inclusions as recorders of magma storage. We also investigated compositional heterogeneities within the magmatic plumbing system. We found two populations of olivine crystals: a low Mg# (78–82) population present at the beginning and end of eruption, recording the maximum volatile contents (2.5 wt % H2O, 1,800 ppm F, 700 ppm Cl, 3,800 ppm S) and a higher Mg# (83–86) population sampled toward the end of the eruption, with lower volatile contents. Despite their host composition, melt inclusions share the same maximum range of CO2concentrations (1.2–1.4 wt %), indicating olivine growth and inclusion capture at similar depths. Overall, both melt and fluid inclusions record similar pressures (450–850 MPa, ∼15–30 km), and when hosted in the same olivine crystal pressures are indistinguishable within error. At these mantle pressures, CO2is expected to be an exsolved phase explaining the similar range of CO2between the two samples, but other volatile species (F, Cl, S) behave incompatibly, and thus, the increase between the two olivine populations can be explained by fractional crystallization prior to eruption. Finally, based on our new data, we provide estimates on the total volatile emission of the eruption.more » « less
An official website of the United States government

