Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone.more » « less
-
Tropopause polar vortices (TPVs) are closed circulations centered on the tropopause that form and predominately reside in high latitudes. Due to their attendant flow, TPVs have been shown to influence surface weather features, and thus, a greater understanding of the dynamics of these features may improve our ability to forecast impactful weather events. These data include a subset of TPVs that have lifetimes of longer than two weeks (the 95th percentile of all TPV cases between 1979 and 2018); these long-lived vortices offer a unique opportunity to study the conditions under which TPVs strengthen and analyze patterns of vortex formation and movement. These data use ERA-Interim, along with TPV tracks derived from the same reanalysis, including data on the formation, motion, and development of these long-lived vortices. Data also include long-lived TPVs that form predominately by splitting from existing vortices. Data from non-likely split genesis events are also included. Seasonal variations in the life cycles of long-lived vortices are included.more » « less
-
This repository includes all data used in the writing of "Characteristics of long-track tropopause polar vortices," published in Weather and Climate Dynamics in March 2022 with doi https://doi.org/10.5194/wcd-3-251-2022. These files, along with the ERA-Interim atmospheric reanalysis, should be sufficient to replicate all figures and tables produced in that publication. Data formats include csv, txt, and npy/nzp files that can be opened with the Numpy Python package.more » « less
An official website of the United States government
