skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1918667

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Access control and information flow are the two building blocks in the design of secure software. Of the two, access control seems ubiquitous, being widely used in operating systems, databases, firewalls, servers, web applications, and so on. The successes of information flow seem less obvious, and its benefits and potential underappreciated. Yet, when it comes to defending against malicious code, access control based defenses have proved susceptible to evasion, or they end up being so restrictive as to interfere with legitimate use. In this talk, I will argue that defenses based on information flow can be more discerning, as they utilize not only the operations performed but also their context, e.g., whether malicious actors could be exerting control over these operation or their key arguments. I will then describe successful applications of information flow to defend against every stage of a cyber attack campaign, including: (a) exploit mitigation for a wide range of software vulnerabilities, (b) malware containment across diverse OSes, including Linux, BSD, and Windows XP through Windows 10, and (c) attack campaign reconstruction, where we achieve a five to six orders of magnitude data reduction by applying our techniques. 
    more » « less
  3. null (Ed.)