Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The discovery of layered materials with potentially unique electrical and chemical properties has become a major focus of materials research in the past decade. 2D II–VI layered hybrids (LHs) are a family of ligand‐protected layered materials capable of isolation in few‐layer form and possess emissive and electronic properties of potential relevance to semiconductor device technologies. The authors showed previously that, akin to black phosphorus and transition metal dichalcogenides, 2D II–VI LHs are sensitive to ambient atmospheric conditions. However, the causes for degradation of these ligand‐protected materials remain unclear. Using ZnSe‐based LHs, it is shown herein that the stability of these materials is related to the length and chemistry of the organic ligands coordinated to the LH surfaces. Furthermore, exposure to isotopically enriched H218O and18O2reveals that H2O and O2are both reactants contributing to ZnSe‐LH degradation. An H2O‐initiated degradation pathway is proposed and is supported by density functional theory calculations. The findings contribute to the discovery of protection strategies for layered materials and elucidate a degradation pathway that may also be applicable to other layered materials.more » « less
-
We show here that non-network metallopolymers can possess intrinsic microporosity stemming from contortion introduced by metallocene building blocks. Metallopolymers constructed from ferrocenyl building blocks linked by phenyldiacetylene bridges are synthesized and possess BET surface areas up to 400 m 2 g −1 . As solubility imparted by pendant groups reduces porosity, copolymerization is used to simultaneously improve both accessible surface area and solubility. Spectroscopic analysis provides evidence that mixed valency between neighboring ferrocenyl units is supported in these polymers.more » « less
-
null (Ed.)The Li1.17Ni0.17Mn0.50Co0.17O2 Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn1.5Co0.5O4 high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn1.5Co0.5(thd)5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO2 spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg−1. The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved.more » « less
An official website of the United States government
