skip to main content


Search for: All records

Award ID contains: 1920166

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The oxygen electrode in a proton-conductor based solid oxide cells is often a triple-conducting material that enables the transport and exchange of electrons (e-), oxygen ions (O2-), and protons (H+), thus expanding active areas to enhance the oxygen electrode activity. In this work, a theoretical model was developed to understand stability of tri-conducting oxygen electrode by studying chemical potentials of neutral species (i.e., μ_(O_2)^ , μ_(H_2)^ , and μ_(H_2 O)^ ) as functions of transport properties, operating parameters, and cell geometry. Our theoretical understanding shows that: (1) In a conventional oxygen-ion based solid oxide cell, a high μ_(O_2)^ (thus high oxygen partial pressure) exists in the oxygen electrode during the electrolysis mode, which may lead to the formation of cracks at the electrode/electrolyte interface. While in a proton-conductor based solid oxide cell, the μ_(O_2)^ is reduced significantly, suppressing the crack formation, and resulting in improved performance stability. (2) In a typical proton-conductor based solid oxide electrolyzer, the dependence of μ_(O_2)^ on the Faradaic efficiency is negligible. Hence, approaches to block the electronic current can improve the electrolysis efficiency while achieving stability. (3) The difference of the μ_(O_2)^ (thus p_(O_2)^ ) between the oxygen electrode and gas phase can be reduced by using higher ionic conducting components and improving electrode kinetics, which lead to further improvement of electrode stability. 
    more » « less
    Free, publicly-accessible full text available May 3, 2024
  2. Focused ion beam (FIB) – scanning electron microscopy (SEM) allowed the characterization of the microstructure of two solid oxide fuel cells prepared at different sintering temperatures. 3D volume reconstruction showed that a relatively low sintering temperature significantly and positively affected distribution, volume and particle size of yttria-stabilized zirconia, nickel, and pore phases inside the anode, as well as the extent of the important triple-phase boundary interface. The poor performance of the T1 sample sintered at a higher temperature is explained by the poorly connected pore network and very low-density triple-phase boundary. The pore space inside the T1 anode was unable to ensure continuous hydrogen flow from the inlet to the outlet and thus exhibited very low gas permeability. In contrast, the T2 sample sintered at a lower temperature had approximately equal amounts of YSZ and nickel and larger pores, which allowed formation of significantly more TPB electrochemical reaction sites. The higher power density of the T2 cell was also the result of its robust pore network capable of transporting hydrogen throughout the anode. The methodology used in this paper eliminates the need for employing hypothetical structures and provides accurate estimates of the investigated parameters by evaluating microstructures that were successfully reconstructed using high-resolution microscopy techniques. 
    more » « less
  3. Phymatolithon  Foslie is one of the most studied and ecologically important genera of crustose coralline algae (CCA) due to their dominant abundance in various marine ecosystems worldwide. The taxonomy of the genus is complex and has been revised and updated many times based on morphological and molecular analyses. We report on a crustose coralline algal species collected in June 2011 via snorkeling in the subtidal zone along the beach Abu Qir on the Mediterranean coast of Egypt, as part of a larger macroalgal diversity survey in the region. The species shows significant sequence divergences (3.5%–14.8% in rbc L; 2.9%–11% in psb A) from other closely related Phymatolithon taxa. Morpho-anatomically, this species possesses the characters considered collectively diagnostic of the genus Phymatolithon , namely, thalli non-geniculate epithelial cells and non-photosynthetic and domed-shaped meristematic cells, usually as short with progressive elongation of their perithallial derivatives. Based on molecular and morphological analyses, we determined that these specimens encompass a new, distinct species that we herein name Phymatolithon abuqirensis. Including this new species, the total number of described Phymatolithon species found in the Mediterranean Sea is now six. 
    more » « less