skip to main content


Search for: All records

Award ID contains: 1921413

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The movement of tropical cyclones (TCs), particularly around the time of landfall, can substantially affect the resulting damage. Recently, trends in TC translation speed and the likelihood of stalled TCs such as Harvey have received significant attention, but findings have remained inconclusive. Here, we examine how the June-September steering wind and translation speed of landfalling Texas TCs change in the future under anthropogenic climate change. Using several large-ensemble/multi-model datasets, we find pronounced regional variations in the meridional steering wind response over North America, but―consistently across models―stronger June-September-averaged northward steering winds over Texas. A cluster analysis of daily wind patterns shows more frequent circulation regimes that steer landfalling TCs northward in the future. Downscaling experiments show a 10-percentage-point shift from the slow-moving to the fast-moving end of the translation-speed distribution in the future. Together, these analyses indicate increases in the likelihood of faster-moving landfalling Texas TCs in the late 21stcentury.

     
    more » « less
  2. Abstract To better understand the dynamics and impacts of blocking events, their 3D structure needs to be further investigated. We present a comprehensive composite analysis of the 3D structure of blocks and its response to future climate change over North Pacific, North Atlantic, and Russia in summers and winters using reanalysis and two large-ensemble datasets from CESM1 and GFDLCM3. In reanalysis, over both ocean and land, the anomalous winds are equivalent-barotropic in the troposphere and stratosphere, and temperature anomalies are positive throughout the troposphere and negative in the lower stratosphere. The main seasonal and regional differences are that blocks are larger/stronger in winters; over oceans, the temperature anomaly is shifted westward due to latent heating. Analyzing the temperature tendency equation shows that in all three sectors, adiabatic warming due to subsidence is the main driver of the positive temperature anomaly; however, depending on season and region, meridional thermal advection and latent heating might have leading-order contributions too. Both GCMs are found to reproduce the climatological 3D structure remarkably well, but sometimes disagree on future changes. Overall, the future summertime response is weakening of all fields (except for specific humidity), although the impact on near-surface temperature is not necessarily weakened; e.g., the blocking-driven near-surface warming over Russia intensifies. The wintertime response is strengthening of all fields, except for temperature in some cases. Responses of geopotential height and temperature are shifted westward in winters, most likely due to latent heating. Results highlight the importance of process-level analyses of blocks’ 3D structure for improved understanding of the resulting temperature extremes and their future changes. 
    more » « less
  3. null (Ed.)
    Abstract The response of mid-latitude equilibrated eddy length scale to static stability has long been questioned but not investigated in well-controlled experiments with unchanged mean zonal wind and meridional temperature gradient. With iterative use of the linear response function of an idealized dry atmosphere, we obtain a time-invariant and zonally-uniform forcing to decrease the near-surface temperature by over 2 K while keeping the change in zonal wind negligible (within 0.2m s −1 ). In such experiments of increased static stability, energy-containing zonal scale decreases by 3–4%, which matches with Rhines scale decrease near the jet core. Changes in Rossby radius (+2%), maximum baroclinic growth scale (-1%) and Kuo scale (0%) fail to match this change in zonal scale. These findings and well-controlled experiments help with better understanding of eddy–mean flow interactions and hence the mid-latitude circulation and its response to climate change. 
    more » « less
  4. null (Ed.)
    Abstract The variability of the zonal-mean large-scale extratropical circulation is often studied using individual modes obtained from empirical orthogonal function (EOF) analyses. The prevailing reduced-order model of the leading EOF (EOF1) of zonal-mean zonal wind, called the annular mode, consists of an eddy–mean flow interaction mechanism that results in a positive feedback of EOF1 onto itself. However, a few studies have pointed out that under some circumstances in observations and GCMs, strong couplings exist between EOF1 and EOF2 at some lag times, resulting in decaying-oscillatory, or propagating, annular modes. Here, we introduce a reduced-order model for coupled EOF1 and EOF2 that accounts for potential cross-EOF eddy–zonal flow feedbacks. Using the analytical solution of this model, we derive conditions for the existence of the propagating regime based on the feedback strengths. Using this model, and idealized GCMs and stochastic prototypes, we show that cross-EOF feedbacks play an important role in controlling the persistence of the annular modes by setting the frequency of the oscillation. We find that stronger cross-EOF feedbacks lead to less persistent annular modes. Applying the coupled-EOF model to the Southern Hemisphere reanalysis data shows the existence of strong cross-EOF feedbacks. The results highlight the importance of considering the coupling of EOFs and cross-EOF feedbacks to fully understand the natural and forced variability of the zonal-mean large-scale circulation. 
    more » « less