skip to main content

Title: An Eddy–Zonal Flow Feedback Model for Propagating Annular Modes
Abstract The variability of the zonal-mean large-scale extratropical circulation is often studied using individual modes obtained from empirical orthogonal function (EOF) analyses. The prevailing reduced-order model of the leading EOF (EOF1) of zonal-mean zonal wind, called the annular mode, consists of an eddy–mean flow interaction mechanism that results in a positive feedback of EOF1 onto itself. However, a few studies have pointed out that under some circumstances in observations and GCMs, strong couplings exist between EOF1 and EOF2 at some lag times, resulting in decaying-oscillatory, or propagating, annular modes. Here, we introduce a reduced-order model for coupled EOF1 and EOF2 that accounts for potential cross-EOF eddy–zonal flow feedbacks. Using the analytical solution of this model, we derive conditions for the existence of the propagating regime based on the feedback strengths. Using this model, and idealized GCMs and stochastic prototypes, we show that cross-EOF feedbacks play an important role in controlling the persistence of the annular modes by setting the frequency of the oscillation. We find that stronger cross-EOF feedbacks lead to less persistent annular modes. Applying the coupled-EOF model to the Southern Hemisphere reanalysis data shows the existence of strong cross-EOF feedbacks. The results highlight the importance of considering the more » coupling of EOFs and cross-EOF feedbacks to fully understand the natural and forced variability of the zonal-mean large-scale circulation. « less
Award ID(s):
Publication Date:
Journal Name:
Journal of the Atmospheric Sciences
Page Range or eLocation-ID:
249 to 267
Sponsoring Org:
National Science Foundation
More Like this
  1. Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of Elmore »Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.

    « less
  2. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increasesmore »gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes.« less
  3. Proxy data and observations suggest that large tropical volcanic eruptions induce a poleward shift of the North Atlantic jet stream in boreal winter. However, there is far from universal agreement in models on this effect and its mechanism, and the possibilities of a corresponding jet shift in the Southern Hemisphere or the summer season have received little attention. Using a hierarchy of simplified atmospheric models, this study examines the impact of stratospheric aerosol on the extratropical circulation over the annual cycle. In particular, the models allow the separation of the dominant shortwave (surface cooling) and longwave (stratospheric warming) impacts of volcanic aerosol. It is found that stratospheric warming shifts the jet poleward in both the summer and winter hemispheres. The experiments cannot definitively rule out the role of surface cooling, but they provide no evidence that it shifts the jet poleward. Further study with simplified models demonstrates that the response to stratospheric warming is remarkably generic and does not depend critically on the boundary conditions (e.g., the planetary wave forcing) or the atmospheric physics (e.g., the treatment of radiative transfer and moist processes). It does, however, fundamentally involve both zonal-mean and eddy circulation feedbacks. The time scales, seasonality, and structuremore »of the response provide further insight into the mechanism, as well as its connection to modes of intrinsic natural variability. These findings have implications for the interpretation of comprehensive model studies and for postvolcanic prediction.

    « less
  4. Abstract A recently developed linear model of eastward-propagating disturbances has two separate unstable modes: convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and slow, MJO-like modes destabilized by cloud–radiation interaction and driven eastward by surface enthalpy fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to include higher-order modes and show that planetary-scale low-frequency waves with more complex structures can also be amplified by cloud–radiation interactions. While most of these waves survive the WTG approximation, their frequencies and growth rates are seriously compromised by that approximation. Applying instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes. For small cloud–radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are destabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.
  5. Abstract Thermodynamical and dynamical aspects of the climate system response to an-thropogenic forcing are often considered in two distinct frameworks: The former in the context of the forcing-feedback framework; the latter in the context of eddy-mean flow feedbacks and large-scale thermodynamic constraints. Here we use experiments with the dynamical core of a general circulation model (GCM) to provide insights into the relationships between these two frameworks. We first demonstrate that the climate feedbacks and climate sensitivity in a dynamical core model are determined by its prescribed thermal relaxation timescales. We then perform two experiments: One that explores the relationships between the thermal relaxation timescale and the climatological circulation; and a second that explores the relationships between the thermal relaxation timescale and the circulation response to a global warming-like forcing perturbation. The results indicate that shorter relaxation timescales (i.e., lower climate sensitivities in the context of a dynamical core model) are associated with 1) a more vigorous large-scale circulation, including increased thermal diffusivity and stronger and more poleward storm tracks and eddy-driven jets and 2) a weaker poleward displacement of the storm tracks and eddy-driven jets in response to the global warming-like forcing perturbation. Interestingly, the circulation response to the forcingmore »perturbation effectively disappears when the thermal relaxation timescales are spatially uniform, suggesting that the circulation response to homogeneous forcing requires spatial inhomogeneities in the local feedback parameter. Implications for anticipating the circulation response to global warming and thermodynamic constraints on the circulation are discussed.« less