skip to main content


Search for: All records

Award ID contains: 1921587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This first multi‐year investigation focuses on bores over the southern North China Plain during the 2015–2019 warm seasons. Bore structure depended on location with undular bores tending to occur close to the coast and non‐undular bores to the west near elevated terrain. Bores were most likely to occur during June and July when convection is active. While bore frequency over the Southern Great Plains (SGP) of U.S. is linked to the region's nocturnal low‐level jet, the bores herein were sensitive to the synoptic regime with ∼80% occurring during 4‐to‐5‐day periods under three different synoptic regimes. The bores had shorter durations than their SGP counterparts and a far wider range in their direction of propagation. Overall, these findings find regional differences in bores' frequency, movement, and structure serving an impetus for future investigations of nocturnal mesoscale convective systems and bores over China and other locations worldwide.

     
    more » « less
  2. Abstract

    Bores have been shown to play a role in the initiation and maintenance of mesoscale convective systems (MCSs), particularly during the night after the boundary layer stabilizes. To date, the generation, evolution, and structure of bores over China has received little attention. This study utilizes observations and simulations with the WRF‐ARW model to investigate the generation and evolution of an atmospheric bore observed over Yangtze‐Huai Plains of China. The bore was associated with a nocturnal MCS that first formed over elevated terrain. The bore was observed ahead of the MCS with a maximum lateral extension of ~100 km. The feature lasted for over 90 mins and propagated at a speed of ~13 m/s, slightly faster than the MCS. In the simulation, the bore evolved from the separating “head” of the convectively generated gravity current. The bore then continued to propagate ahead of the MCS, even after the dissipation of the feeder current, and took on the appearance of an undular bore. The bore lifted a layer of convectively unstable air above the nocturnal surface inversion, initiating new convection ahead of the MCS to help maintain the MCS. The Scorer parameter ahead of the bore revealed a low‐level wind profile with curvature of the vertical profile of horizontal wind, favoring the trapping of wave energy and the persistence of the bore. These results are generally consistent with the role of bores in the maintenance of nocturnal MCSs and emphasize the need for future studies into the relationship between bores and nocturnal MCSs over China.

     
    more » « less
  3. Abstract The bow-and-arrow Mesoscale Convective System (MCS) has a unique structure with two convective lines resembling the shape of an archer’s bow and arrow. These MCSs and their arrow convection (located behind the MCS leading line) can produce hazardous winds and flooding extending over hundreds of kilometers, which are often poorly predicted in operational forecasts. This study examines the dynamics of a bow-and-arrow MCS observed over the Yangtze–Huai Plains of China, with a focus on the arrow convection provided. The analysis utilized backward trajectories and Lagrangian vertical momentum budgets to simulations employing the WRF‐ARW and CM1 models. Cells within the arrow in the WRF-ARW simulations of the MCS were elevated, initially forming as convectively unstable air within the low-level jet (LLJ), which gently ascended over the cold pool and converged with the MCS’s mesoscale convective vortex (MCV) at higher altitudes. The subsequent ascent in these cells was enhanced by dynamic pressure forcing due to the updraft being within a layer where the vertical shear changed with height due to the superposition of the LLJ and the MCV. These dynamic forcings initially played a larger role in the ascent than the parcel’s buoyancy. These findings were bolstered by idealized simulations employing the CM1 model. These results illustrate a challenge for accurately forecasting bow-and-arrow MCSs as the updraft magnitude depends on dynamical forcing associated with the interaction between vertical shear associated with the environment and due to convectively generated circulations. 
    more » « less
  4. Abstract Our world is rapidly changing. Societies are facing an increase in the frequency and intensity of high impact and extreme weather and climate events. These extremes together with exponential population growth and demographic shifts (e.g., urbanization, increase in coastal populations) are increasing the detrimental societal and economic impact of hazardous weather and climate events. Urbanization and our changing global economy have also increased the need for accurate projections of climate change and improved predictions of disruptive and potentially beneficial weather events on km-scales. Technological innovations are also leading to an evolving and growing role of the private sector in the weather and climate enterprise. This article discusses the challenges faced in accelerating advances in weather and climate forecasting and proposes a vision for key actions needed across the private, public, and academic sectors. Actions span: i) Utilizing the new observational and computing ecosystems; ii) Strategies to advance earth system models; iii) Ways to benefit from the growing role of artificial intelligence; iv) Practices to improve the communication of forecast information and decision support in our age of internet and social media; and v) Addressing the need to reduce the relatively large, detrimental impacts of weather and climate on all nations and especially on low income nations. These actions will be based on a model of improved cooperation between the public, private, and academic sectors. This article represents a concise summary of the White Paper on the Future of Weather and Climate Forecasting (2021) put together by the World Meteorological Organizations’s Open Consultative Platform. 
    more » « less
  5. Abstract There is a growing interest in the use of ground-based remote sensors for Numerical Weather Prediction (NWP), which is sparked by their potential to address the currently existing observation gap within the Planetary Boundary Layer (PBL). Nevertheless, open questions still exist regarding the relative importance of and synergy among various instrument types. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, both in terms of the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors shown to limit the forecast value extracted from such networks. 
    more » « less
  6. Abstract An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory); (ii) the nighttime surface buoyancy gradient has little impact on jet strength; and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north–south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma. 
    more » « less
  7. Abstract This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy. 
    more » « less