skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The value of assimilating different ground-based profiling networks on the forecasts of bore-generating nocturnal convection
Abstract There is a growing interest in the use of ground-based remote sensors for Numerical Weather Prediction (NWP), which is sparked by their potential to address the currently existing observation gap within the Planetary Boundary Layer (PBL). Nevertheless, open questions still exist regarding the relative importance of and synergy among various instrument types. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, both in terms of the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors shown to limit the forecast value extracted from such networks.  more » « less
Award ID(s):
1921587
PAR ID:
10352633
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Forecasts of tropical cyclone (TC) tornadoes are less skillful than their non‐TC counterparts at all lead times. The development of a convection‐allowing regional ensemble, known as the Warn‐on‐Forecast System (WoFS), may help improve short‐fused TC tornado forecasts. As a first step, this study investigates the fidelity of convective‐scale kinematic and thermodynamic environments to a preliminary set of soundings from WoFS forecasts for comparison with radiosondes for selected 2020 landfalling TCs. Our study shows reasonable agreement between TC convective‐scale kinematic environments in WoFS versus observed soundings at all forecast lead times. Nonetheless, WoFS is biased toward weaker than observed TC‐relative radial winds, and stronger than observed near‐surface tangential winds with weaker winds aloft, during the forecast. Analysis of storm‐relative helicity (SRH) shows that WoFS underestimates extreme observed values. Convective‐scale thermodynamic environments are well simulated for both temperature and dewpoint at all lead times. However, WoFS is biased moister with steeper lapse rates compared to observations during the forecast. Both CAPE and, to a lesser extent, 0–3‐km CAPE distributions are narrower in WoFS than in radiosondes, with an underestimation of higher CAPE values. Together, these results suggest that WoFS may have utility for forecasting convective‐scale environments in landfalling TCs with lead times of several hours. 
    more » « less
  2. null (Ed.)
    The Great Plains low-level jet (LLJ) is a contributing factor to the initiation and evolution of nocturnal Mesoscale Convective Systems (MCSs) in the central United States by supplying moisture, warm air advection, and a source of convergence. Thus, the ability of models to correctly depict thermodynamics in the LLJ likely influences how accurately they forecast MCSs. In this study, the Weather Research and Forecasting (WRF) model was used to examine the relationship between spatial displacement errors for initiating simulated MCSs, and errors in forecast thermodynamic variables up to three hours before downstream MCS initiation in 18 cases. Rapid Update Cycle (RUC) analyses in 3 layers below 1500 m above ground level were used to represent observations. Correlations between simulated MCS initiation spatial displacements and errors in the magnitude of forecast thermodynamic variables were examined in regions near and upstream of both observed and simulated MCSs, and were found to vary depending on the synoptic environment. In strongly-forced cases, large negative moisture errors resulted in simulated MCSs initiating further downstream with respect to the low-level flow from those observed. For weakly-forced cases, correlations were weaker, with a tendency for smaller negative moisture errors to be associated with larger displacement errors to the right of the inflow direction for initiating MCSs. 
    more » « less
  3. Upscale convective growth remains a poorly understood aspect of convective evolution, and numerical weather prediction models struggle to accurately depict convective morphology. To better understand some physical mechanisms encouraging upscale growth, 30 warm-season convective events from 2016 over the United States Great Plains were simulated using the Weather Research and Forecasting (WRF) model to identify differences in upscale growth and non-upscale growth environments. Also, Bryan Cloud Model (CM1) sensitivity tests were completed using different thermodynamic environments and wind profiles to examine the impact on upscale growth. The WRF simulations indicated that cold pools are significantly stronger in cases that produce upscale convective growth within the first few hours following convective initiation compared to those without upscale growth. Conversely, vertical wind shear magnitude has no statistically significant relationship with either MCS or non-MCS events. This is further supported by the CM1 simulations, in which tests using the WRF MCS sounding developed a large convective system in all tests performed, including one which used the non-MCS kinematic profile. Likewise, the CM1 simulations of the non-upscale growth event did not produce an MCS, even when using the MCS kinematic profile. Overall, these results suggest that the near-storm and pre-convective thermodynamic environment may play a larger role than kinematics in determining upscale growth potential in the Great Plains. 
    more » « less
  4. Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions. 
    more » « less
  5. null (Ed.)
    Abstract The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome. 
    more » « less