skip to main content


Search for: All records

Award ID contains: 1922259

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials.

     
    more » « less
  2. This perspective offers insights from discussions conducted during the Telluride Science meeting on organic mixed ionic and electronic conductors, outlining the challenges associated with understanding the behavior of this intriguing materials class.

     
    more » « less
    Free, publicly-accessible full text available November 2, 2024
  3. Free, publicly-accessible full text available July 25, 2024
  4. null (Ed.)
    A major limitation for polymeric mixed ionic/electronic conductors (MIECs) is the trade-off between ionic and electronic conductivity; changes made that improve one typically hinder the other. In order to address this fundamental problem, this work provides insight into ways that we could improve one type of conduction without hindering the other. We investigated a common oligoethylene glycol side chain polymer by adjusting the oxygen atom content and position, providing structural insights for materials that better balanced the two conduction pathways. The investigated polymer series showed the prototypical conflict between ionic and electronic conduction for oxygen atom content, with increasing oxygen atom content increasing ionic conductivity, but decreasing electronic conductivity; however, by increasing the oxygen atom distance from the polymer backbone, both ionic and electronic conductivity could be improved. Following these rules, we show that poly(3-(methoxyethoxybutyl)thiophene), when blended with lithium bistrifluoromethanesulfonimide (LiTFSI), matches the ionic conductivity of a comparable MIEC [poly(3-(methoxyethoxyethoxymethyl)thiophene)], while simultaneously showing higher electronic conductivity, highlighting the potential of this design strategy. We also provide strategies for tuning the MIEC performance to fit a desired application, depending on if electronic, ionic, or balanced conduction is most important. These results have implications beyond just polythiophene-based MIECs, as these strategies for balancing backbone crystallization and coordinating group interconnectivity apply for all semicrystalline conjugated polymers. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)