skip to main content


Search for: All records

Award ID contains: 1922877

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tracer particles designed specifically for X-ray particle tracking and imaging velocimetry (XPTV and XPIV) are necessary to widen the range of flows that can be studied with these techniques. In this study, we demonstrate in-lab XPTV using new, custom-designedO(50 μm) diameter tungsten-coated hollow carbon spheres and a single energy threshold photon counting detector. To the best knowledge of the authors, these are the firstO(50 μm) tracer particles to be developed specifically for X-ray particle velocimetry. To explore the measurement quality enhancement enabled by the new tracer particles and photon counting detector, a well understood Poiseuille pipe flow is measured. The data show agreement with the analytical solution for the depth-averaged velocity profile. The experiment also shows that the tungsten-coated particles achieve higher contrast and are better localized than previously available silver-coated particles, making faster and more precise measurements attainable. The particles are manufactured with a readily scalable chemical vapor deposition process. We further show that laboratory XPTV is practical with currently available energy-resolving photon counting detectors (PCDs), despite their presently lower spatiotemporal resolution compared to scintillating detectors. This finding suggests that energy-thresholding identification of different classes of tracers is feasible, further motivating the exploration of the X-ray tracer particle design space. The latest generation of PCDs is incorporating multiple energy thresholds, and has higher count rate limits. In the near future one could potentially expand on the work presented and track multiple tracer species and scalar fields simultaneously.

     
    more » « less
  2. Abstract

    We investigate the feasibility of in-laboratory tomographic X-ray particle tracking velocimetry (TXPTV) and consider creeping flows with nearly density matched flow tracers. Specifically, in these proof-of-concept experiments we examined a Poiseuille flow, flow through porous media and a multiphase flow with a Taylor bubble. For a full 360$$^\circ$$computed tomography (CT) scan we show that the specially selected 60 micron tracer particles could be imaged in less than 3 seconds with a signal-to-noise ratio between the tracers and the fluid of 2.5, sufficient to achieve proper volumetric segmentation at each time step. In the pipe flow, continuous Lagrangian particle trajectories were obtained, after which all the standard techniques used for PTV or PIV (taken at visible wave lengths) could also be employed for TXPTV data. And, with TXPTV we can examine flows inaccessible with visible wave lengths due to opaque media or numerous refractive interfaces. In the case of opaque porous media we were able to observe material accumulation and pore clogging, and for flow with Taylor bubble we can trace the particles and hence obtain velocities in the liquid film between the wall and bubble, with thickness of liquid film itself also simultaneously obtained from the volumetric reconstruction after segmentation. While improvements in scan speed are anticipated due to continuing improvements in CT system components, we show that for the flows examined even the presently available CT systems could yield quantitative flow data with the primary limitation being the quality of available flow tracers.

    Graphic abstract 
    more » « less
  3. Abstract We evaluate Beer–Lambert (BL) ray-tracing and Monte Carlo N-Particle (MCNP) photon tracking simulations for prediction and comparison of x-ray imaging system performance. These simulation tools can aid the methodical design of laboratory-scale x-ray particle image velocimetry (XPIV) experiments and tracer particles by predicting image quality. Particle image signal-to-noise ratio (SNR) is used as the metric of system performance. Simulated and experiment data of hollow, silver-coated, glass sphere tracer particles (AGSF-33) are compared. As predicted by the simulations, the AGSF-33 particles are visible with a SNR greater than unity in 100 ms exposure time images, demonstrating their potential as x-ray PIV or particle tracking velocimetry (XPTV) tracers. The BL approach predicts the image contrast, is computationally inexpensive, and enables the exploration of a vast parameter space for system design. MCNP simulations, on the other hand, predict experiment images slightly more accurately, but are more than an order of magnitude more computationally expensive than BL simulations. For most practical XPIV system design applications, the higher computational expense of MCNP is likely not justified by the modest accuracy improvement compared to BL. 
    more » « less