skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1923042

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A novel, multi‐scale climate modeling approach is used to show the potential for increases in future tornado intensity due to anthropogenic climate change. Historical warm‐ and cool‐season (WARM and COOL) tornado events are virtually placed in a globally warmed future via the “pseudo‐global warming” method. As hypothesized based on meteorological arguments, the tornadic‐storm and associated vortex of the COOL event experiences consistent and robust increases in intensity in an ensemble of imposed climate‐change experiments. The tornadic‐storm and associated vortex of the WARM event experiences increases in intensity in some of the experiments, but the response is neither consistent nor robust, and is overall weaker than in the COOL event. An examination of environmental parameters provides further support of the disproportionately stronger response in the cool‐season event. These results have implications on future tornadoes forming outside of climatologically favored seasons. 
    more » « less
  2. Abstract The pseudo‐global‐warming (PGW) methodology provides an efficient means to investigate the response of a weather or climate event under an imposed climate change signal. In the traditional PGW implementation, this signal is represented through climate‐change “deltas” constructed using monthly averages of global climate model (GCM) output over decadal or longer periods during the past and future. The implications of alternative formulations of such deltas were explored herein. Diurnally varying (DV) deltas were compared to the time‐constant (TC) deltas used in the traditional PGW implementation; this was done to test the potential effect of future changes in the diurnal cycles of temperature, humidity, and winds. Deltas created using 10‐year averages were compared to those using 30‐year averages, to examine the effects of the time‐averaging period in the delta construction. Finally, the common practice of additionally averaging across multiple GCMs to form a composite delta was also considered. Using simulations of three different historical convective storm events, it was shown that each of these PGW delta formulations results in differences in simulation metrics such as total accumulated rainfall, and convective intensity, but major and/or unambiguous differences were not always found. It is recommended that users of the PGW approach carefully consider all implications of delta formulation on their particular problem. 
    more » « less