skip to main content


Search for: All records

Award ID contains: 1923365

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We deliberately select three flares to investigate heating effects of supra-arcade downflows (SADs) on the surrounding fan plasma. Prior work found in one flare that the plasma around most SADs tends to heat up or stay the same temperature, accompanied by discernible signatures of the adiabatic heating due to plasma compression as well as viscous heating due to viscous motions of plasma. We extend this work to more flares and find that the heating effects of the SADs are also present in these events. The adiabatic heating is dominant over the viscous heating in each event. The adiabatic heating in the two M1.3 flares, being on the order of about 0.02–0.18 MK s−1, is fairly comparable. In the more energetic X1.7 flare, the adiabatic heating is on the order of 0.02–0.3 MK s−1, where we observe a more pronounced temperature increase during which dozens of SADs descend through the fan. As SADs constantly contribute to the heating of the surrounding fan plasma, the areas where SADs travel through tend to cool much slower than the areas without SADs, and the plasma of higher temperature ends up concentrating in areas where SADs frequently travel through. We also find that the cooling rate of areas without SADs is ∼1000 K s−1, much slower than would be expected from normal conductive cooling. Instead, the cooling rate can be interpreted nicely by a process where conductive cooling is suppressed by turbulence.

     
    more » « less
  2. Abstract

    We have developed a tracking algorithm to determine the speeds of supra-arcade downflows (SADs) and set up a system to automatically track SADs and measure some interesting parameters. By conducting an analysis of six flares observed by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we detect more smaller and slower SADs than prior work, due to the higher spatial resolution of our observational data. The inclusion of these events with smaller and slower SADs directly results in lower median velocities and widths than in prior work, but the fitted distributions and evolutions of the parameters still show good consistency with prior work. The observed distributions of the widths, speeds, and lifetimes of SADs are consistent with log-normal distributions, indicating that random and unstable processes are responsible for generating SADs during solar eruptions. Also, we find that the fastest SADs occur at approximately the middle of the height ranges. The number of SADs in each image versus time shows that there are “rest phases” of SADs, when few SADs are seen. These findings support the idea that SADs originate from a fluid instability. We compare our results with a numerical simulation that generates SADs using a mixture of the Rayleigh–Taylor instability and the Richtmyer–Meshkov instability, and find that the simulation generates quantities that are consistent with our observational results.

     
    more » « less
  3. Heavy ion signatures of coronal mass ejections (CMEs) indicate that rapid and strong heating takes place during the eruption and early stages of propagation. However, the nature of the heating that produces the highly ionized charge states often observed in situ is not fully constrained. An MHD simulation of the Bastille Day CME serves as a test bed to examine the origin and conditions of the formation of heavy ions evolving within the CME in connection with those observed during its passage at L1. In particular, we investigate the bimodal nature of the Fe charge state distribution, which is a quintessential heavy ion signature of CME substructure, as well as the source of the highly ionized plasma. We find that the main heating experienced by the tracked plasma structures linked to the ion signatures examined is due to field-aligned thermal conduction via shocked plasma at the CME front. Moreover, the bimodal Fe distributions can be generated through significant heating and rapid cooling of prominence material. However, although significant heating was achieved, the highest ionization stages of Fe ions observed in situ were not reproduced. In addition, the carbon and oxygen charge state distributions were not well replicated owing to anomalous heavy ion dropouts observed throughout the ejecta. Overall, the results indicate that additional ionization is needed to match observation. An important driver of ionization could come from suprathermal electrons, such as those produced via Fermi acceleration during reconnection, suggesting that the process is critical to the development and extended heating of extreme CME eruptions, like the Bastille Day CME. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. null (Ed.)